The Beurling–Malliavin Multiplier Theorem and Its Analogs for the de Branges Spaces

  • Yurii Belov
  • Victor Havin
Living reference work entry


Let ω be a non-negative function on \(\mathbb{R}\). Is it true that there exists a non-zero f from a given space of entire functions X satisfying
$$\displaystyle{\text{(a)}\quad \vert f\vert \leq \omega \quad \mathrm{or\quad (b)}\quad \vert f\vert \asymp \omega ?}$$
The classical Beurling–Malliavin Multiplier Theorem corresponds to (a) and the classical Paley–Wiener space as X. This is a survey of recent results for the case when X is a de Branges space \(\mathcal{H}(E)\). Numerous answers mainly depend on the behavior of the phase function of the generating function E .

For example, if \(\arg E\) is regular, then for any even positive ω non-increasing on [0 , ) with logωL 1((1 + x 2)−1dx) there exists a non-zero \(f \in \mathcal{H}(E)\) such that | f | ≤ | E | ω. This is no longer true for the irregular case.

The Toeplitz kernel approach to these problems is discussed. This method was recently developed by N. Makarov and A. Poltoratski.


Entire Function Phase Function Toeplitz Operator Blaschke Product Wiener Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank A. Borichev for the permission to expose his construction illustrating the sharpness of the BM-theorem (see section “More on the Oscillations of B M -Majorants: Borichev’s Construction”).

The first author was supported by the Chebyshev Laboratory (St. Petersburg State University) under RF Government grant 11.G34.31.0026, by JSC “Gazprom Neft,” and by RFBR grant 12-01-31492. The second author was supported by St. Petersburg State University Action Item 2: NIR “Function theory, operators theory and its applications”


  1. 1.
    E. Abakumov, A. Baranov, Yu. Belov, “Localization of zeros for Cauchy transforms”, Int Math Res Notices (2014) doi: 10.1093/imrn/rnu142 First published online: September 10, 2014Google Scholar
  2. 2.
    Azarin, V.S.: On rays of completely regular growth of an entire function. Math. USSR Sb. 8, 437–450 (1969)CrossRefGoogle Scholar
  3. 3.
    Baranov, A.D.: Polynomials in the de Branges spaces of entire functions. Ark. Mat. 44, 1, 16–38 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Baranov, A.D., Khavin, V.P.: Admissible majorants for model subspaces and arguments of inner functions. Funktsional. Anal. Prilozhen. 40(4), 3–21, 111 (2006, in Russian, with Russian summary); English transl., Funct. Anal. Appl. 40(4) (2006)Google Scholar
  5. 5.
    Baranov, A.D., Borichev, A.A., Havin, V.P.: Majorants of meromorphic functions with fixed poles. Indiana Univ. Math. J. 56(4), 1595–1628 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Belov, Yu.S., Khavin, V.P.: On a theorem of I. I. Privalov on the Hilbert transform of Lipschitz functions. Mat. Fiz. Anal. Geom. 11(4), 380–407 (2004, in Russian, with English, Russian and Ukrainian summaries)Google Scholar
  7. 7.
    Belov, Yu.S.: Criteria for the admissibility of majorants for model subspaces with a rapidly increasing argument of the generating inner function. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 345 (2007), no. Issled. po Linein. Oper. i Teor. Funkts. 34, 55–84, 141 (in Russian, with English and Russian summaries); English translation in J. Math. Sci. (N. Y.) 148(6), 813–829 (2008)Google Scholar
  8. 8.
    Belov, Y.: Necessary conditions for the admissibility of majorants for some model subspaces. Algebra i Analiz 20(4), 1–26 (2008, in Russian). Translation in St. Petersburg Math. J. 20(4), 507–525 (2009)Google Scholar
  9. 9.
    Belov, Y.: Model functions with an almost prescribed modulus. Algebra i Analiz 20(2), 3–18 (2008, in Russian); translation in St. Petersburg Math. J. 20(2), 163–174 (2009)Google Scholar
  10. 10.
    Beurling, A., Malliavin, P.: On Fourier transforms of measures with compact support. Acta Math. 107, 291–309 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Beurling, A., Malliavin, P.: On the closure of characters and the zeros of entire functions. Acta Math. 118, 79–93 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    de Branges, L.: Hilbert Spaces of Entire Functions. Prentice Hall, Englewood Cliffs (1968)zbMATHGoogle Scholar
  13. 13.
    D’yakonov, K.M.: Moduli and arguments of analytic functions from subspaces in H p that are invariant under the backward shift operator. Sibirsk. Mat. Zh. 31(6), 64–79 (1990, in Russian); English transl., Siberian Math. J. 31(6), 926–939 (1990)Google Scholar
  14. 14.
    Havin, V.P.: On the uncertainty principle in harmonic analysis. In: Byrnes, J.S. (ed.) Twentieth Century Harmonic Analysis - A Celebration, pp. 3–29. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  15. 15.
    Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Havin, V.P., Mashreghi, J.: Admissible majorants for model subspaces of H 2. I. Slow winding of the generating inner function. Can. J. Math. 55(6), 1231–1263 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Havin, V.P., Mashreghi, J.: Admissible majorants for model subspaces of H 2. II. Fast winding of the generating inner function. Can. J. Math. 55(6), 1264–1301 (2003)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Havin, V.P., Mashreghi, J., Nazarov, F.: Beurling-Malliavin multiplier theorem: the 7th proof. Algebra i Analiz 17(5), 3–68 (2005)Google Scholar
  19. 19.
    Hruščev, S.V., Nikol’skiǐ, N.K., Pavlov, B.S.: Unconditional bases of exponentials and of reproducing kernels. In: Havin, V.P., Nikol’skiǐ, N.K. (eds.) Complex Analysis and Spectral Theory. Lecture Notes in Mathematics, vol. 864, pp. 214–335. Springer, Berlin (1981)CrossRefGoogle Scholar
  20. 20.
    Kaltenbäck, M., Woracek, H.: Hermite-Biehler functions with zeros close to the imaginary axis. Proc. Am. Math. Soc. 133(1), 245–255 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Koosis, P.: The Logarithmic Integral I. Cambridge Studies in Advanced Mathematics, vol. 12. Cambridge University Press, Cambridge (1988)Google Scholar
  22. 22.
    Koosis, P.: The Logarithmic Integral II. Cambridge Studies in Advanced Mathematics, vol. 21. Cambridge University Press, Cambridge (1992)Google Scholar
  23. 23.
    Koosis, P.: Leçons sur le Théorème de Beurling et Malliavin. Les Publications CRM, Montréal (1996)zbMATHGoogle Scholar
  24. 24.
    Levin, B.Ya.: Distribution of Zeros of Entire Functions, 632 pp. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1956, in Russian); English translation: American Mathematical Society, Providence (1964)Google Scholar
  25. 25.
    Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. American Mathematical Society, Providence (1996). In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko.Google Scholar
  26. 26.
    Lyubarskii, Yu., Malinnikova, E.: On approximation of subharmonic functions. J. Anal. Math. 83, 121–149 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Makarov, N., Poltoratski, A.: Meromorphic inner functions, Toeplitz kernels, and the uncertainty principile. In: Perspective in Analysis, pp. 185–252. Springer, Berlin (2005)Google Scholar
  28. 28.
    Makarov, N., Poltoratski, A.: Beurling-Malliavin theory for Toeplitz kernels. Invent. Math. 180(3), 443–480 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Malliavin, P.: On the multiplier theorem for Fourier transforms of measures with compact support. Ark. Mat. 17, 69–81 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Riesz, F.: Sur un Théorème de Maximum de Mm. Hardy et Littlewood. J. Lond. Math. Soc. 1, 10–13 (1932)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Woracek, H.: De Branges spaces of entire functions closed under forming difference quotients. Integr. Equ. Oper. Theory 37(2), 238–249 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Yulmakhametov, R.S.: Approximation of subharmonic functions. Anal. Math. 11(3), 257–282 (1985, in Russian)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Chebyshev Laboratory, St. Petersburg State UniversityVasilyevsky Island, St. PetersburgRussia
  2. 2.Department of Mathematics and Mechanics, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations