Skip to main content

Schrödinger Operators and Canonical Systems

  • Living reference work entry
  • First Online:
Operator Theory
  • 339 Accesses

Abstract

This paper discusses the inverse spectral theory of Schrödinger equations from the point of view of canonical systems and de Branges’s theory of Hilbert spaces of entire functions. The basic idea is to view Schrödinger equations as special canonical systems. For canonical systems, a complete inverse spectral theory is available: there is a one-to-one correspondence between the coefficient functions, on the one hand, and suitable spectral data, on the other hand. The task then is to identify those subclasses that correspond to Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ben Amor, A., Remling, C.: Direct and inverse spectral theory of one-dimensional Schrödinger operators with measures. Intgr. Equ. Oper. Theory 52, 395–417 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Branges, L.: Some Hilbert spaces of entire functions. Trans. Am. Math. Soc. 96, 259–295 (1960)

    Article  MATH  Google Scholar 

  3. de Branges, L.: Some Hilbert spaces of entire functions II. Trans. Am. Math. Soc. 99, 118–152 (1961)

    Article  MATH  Google Scholar 

  4. de Branges, L.: Some Hilbert spaces of entire functions III. Trans. Am. Math. Soc. 100, 73–115 (1961)

    Article  MATH  Google Scholar 

  5. de Branges, L.: Some Hilbert spaces of entire functions IV. Trans. Am. Math. Soc. 105, 43–83 (1962)

    Article  MATH  Google Scholar 

  6. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  7. Hassi, S., de Snoo, H., Winkler, H.: Boundary-value problems for two-dimensional canonical systems. Intgr. Equ. Oper. Theory 36, 445–479 (2000)

    Article  MATH  Google Scholar 

  8. Levitan, B.M.: Inverse Sturm-Liouville Problems. VSP, Zeist (1987)

    MATH  Google Scholar 

  9. Marchenko, V.A.: Sturm-Liouville Operators and Applications. AMS Chelsea Publishing, Providence (2011)

    MATH  Google Scholar 

  10. Remling, C.: Schrödinger operators and de Branges spaces. J. Funct. Anal. 196, 323–394 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Remling, C.: Inverse spectral theory for one-dimensional Schrödinger operators: the A function. Math. Z 245, 597–617 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Simon, B.: A new approach to inverse spectral theory, I. Fundamental formalism. Ann. of Math. (2) 150, 1029–1057 (1999)

    Google Scholar 

  13. Winkler, H.: The inverse spectral problem for canonical systems. Intgr. Equ. Oper. Theory 22, 360–374 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Remling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this entry

Cite this entry

Remling, C. (2014). Schrödinger Operators and Canonical Systems. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0692-3_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0692-3_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Basel

  • Online ISBN: 978-3-0348-0692-3

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics