Skip to main content

Commutative Dilation Theory

  • Reference work entry
  • First Online:
Operator Theory

Abstract

Dilation theory of single Hilbert space contractions is an important and very useful part of operator theory. By the main result of the theory, every Hilbert space contraction has the uniquely determined minimal unitary dilation. In many situations this enables to study instead of a general contraction its unitary dilation, which has much nicer properties.The present paper gives a survey of dilation theory for commuting tuples of Hilbert space operators. The paper is organized as follows:

  1. 1.

    Introduction

  2. 2.

    Dilation theory of single contractions

  3. 3.

    Regular dilations

  4. 4.

    The Ando dilation and von Neumann inequality

  5. 5.

    Spherical dilations

  6. 6.

    Analytic models

  7. 7.

    Further examples

  8. 8.

    Concluding remarks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agler, J.: The Arveson extension theorem and coanalytic models. Integr. Equ. Oper. Theory 5, 608–631 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agler, J.: Hypercontractions and subnormality. J. Oper. Theory 13, 201–217 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Agler, J.: An abstract approach to model theory. In: Conway, J.B., Morrel, B.B. (eds.) Surveys of Some Recent Results in Operator Theory Vol. II. Pitman Research Notes in Mathematics Series, vol. 192. Longman, Harlow (1988)

    Google Scholar 

  4. Agler, J., McCarthy, J.E.: Distinguished varieties. Acta Math. 194, 133–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrozie, C., Engliš, M., Müller, V.: Operator tuples and analytic models over general domains in \(\mathbb{C}^{n}\). J. Oper. Theory 47, 287–302 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Ambrozie, C., Eschmeier, J.: A commutant lifting theorem on analytic polyhedra. In: Topological Algebras, Their Applications, and Related Topics. Banach Center Publ., vol. 67, pp. 83–108. Polish Academy of Sciences, Warsaw (2005)

    Google Scholar 

  7. Arazy, J., Engliš, M.: Analytic models for commuting operator tuples on bounded symmetric domains. Trans. Am. Math. Soc. 355, 837–864 (2003) (electronic)

    Google Scholar 

  8. Arveson, W.: Subalgebras of C -algebras. III. Multivariable operator theory. Acta Math. 181, 159–228 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Arveson, W.: The curvature invariant of a Hilbert module over \(\mathbb{C}[z_{1},\cdots \,,z_{d}]\). J. Reine Angew. Math. 522, 173–236 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Athavale, A.: Holomorphic kernels and commuting operators. Trans. Am. Math. Soc. 304, 101–110 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Athavale, A.: On the intertwining joint isometries. J. Oper. Theory 23, 339–350 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Bagchi, B., Misra, G.: Homogeneous tuples of multiplication operators on twisted Bergman spaces. J. Funct. Anal. 136, 171–213 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ball, J., Bolotnikov, V.: Canonical transfer-function realization for Schur multipliers on the Drury-Arveson space and models for commuting row contractions. Indiana Univ. Math. J. 21, 665–716 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Ball, J., Trent, T., Vinnikov, V.: Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces. In: Operator Theory and Analysis (Amsterdam, 1997). Operator Theory: Advances and Applications, vol. 122, pp. 89–138. Birkhäuser, Basel (2001)

    Google Scholar 

  15. Ball, J.A., Li, W.S., Timotin, D., Trent, T.T.: A commutant lifting theorem on the polydisc. Indiana Univ. Math. J. 48, 653–675 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhattacharyya, T., Eschmeier, J., Sarkar, J.: On completely non coisometric commuting contractive tuples. Proc. Indian Acad. Sci. Math. Sci. 116, 299–316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brehmer, S.: Über vertauschbare Kontraktionen des Hilbertschen Räumes. Acta Sci. Math. (Szeged) 22, 106–111 (1961)

    MathSciNet  MATH  Google Scholar 

  18. Crabb, M.J., Davie, A.M.: Von Neumann’s inequality for Hilbert space operators. Bull. Lond. Math. Soc. 7, 49–50 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Curto, R., Vasilescu, F.-H.: Standard operator models in the polydisc. Indiana Univ. Math. J. 42, 791–810 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Curto, R., Vasilescu, F.-H.: Standard operator models in the polydisc II. Indiana Univ. Math. J. 44, 727–746 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davidson, K., Le, T.: Commutant lifting for commuting row contractions. Bull. Lond. Math. Soc. 42(3), 506–516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dixon, P.G.: The von Neumann inequality for polynomials of degree greater than two. J. Lond. Math. Soc. 14, 369–375 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Douglas, R.G., Misra, G., Sarkar, J.: Contractive Hilbert modules and their dilations. Israel J. Math. 187, 141–165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Drury, S.W.: A generalization of von Neumann’s inequality to the complex ball. Proc. Am. Math. Soc. 68, 300–304 (1978)

    MathSciNet  MATH  Google Scholar 

  25. Foiaş, C., Frazho, A.E.: The commutant lifting approach to interpolation problems. In: Operator Theory: Advances and Applications, vol. 44. Birkhäuser, Basel (1990)

    Google Scholar 

  26. Gaspar, D., Suciu, N.: On the intertwinings of regular dilations. Volume dedicated to the memory of Wlodzimierz Mlak. Ann. Polon. Math. 66, 105–121 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Grinshpan, A., Kaliuzhnyi, D., Vinnikov, V., Woerdeman, H.: Classes of tuples of commuting contractions satisfying the multivariable von Neumann inequality. J. Funct. Anal. 256, 3035–3054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hua, L.K.: Harmonic Analysis of Functions of Several Variables in the Classical Domains (1979). Transl. Math. Monogr., vol. 6. American Mathematical Society, Providence

    Google Scholar 

  29. Itô, T.: On the commutative family of subnormal operators. J. Fac. Sci. Hokkaido Univ. Ser. I 14, 1–15 (1958)

    MathSciNet  MATH  Google Scholar 

  30. Kalyuzhnyi, D.S.: The von Neumann inequality for linear matrix functions of several variables. (Russian) Mat. Zametki 64(2), 218–223 (1998); translation in Math. Notes 64(1–2), 186–189 (1999)

    Google Scholar 

  31. Kordula, V., Müller, V.: Vasilescu-Martinelli formula for operators in Banach spaces. Stud. Math. 113, 127–139 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Müller, V.: Commutant lifting theorem for n-tuples of contractions. Acta Sci. Math. (Szeged) 59, 465–474 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Müller, V., Vasilescu, F.-H.: Standard models for some commuting multishifts. Proc. Am. Math. Soc. 117, 979–989 (1993)

    Article  MATH  Google Scholar 

  34. Popescu, G.: Characteristic functions for infinite sequences of noncommuting operators. J. Oper. Theory 22, 51–71 (1989)

    MathSciNet  MATH  Google Scholar 

  35. Popescu, G.: Isometric dilations for infinite sequences of noncommuting operators. Trans. Am. Math. Soc. 316, 523–536 (1989b)

    Article  MathSciNet  MATH  Google Scholar 

  36. Popescu, G.: Noncommutative joint dilations and free product operator algebras. Pac. J. Math. 186, 111–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pott, S.: Standard models under polynomial positivity conditions. J. Oper. Theory 41, 365–389 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Sarason, D.: Generelized interpolation in H . Trans. Am. Math. Soc. 127, 179–203 (1967)

    MathSciNet  MATH  Google Scholar 

  39. Sz.-Nagy, B., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Spaces. Akadémiai Kiadó, Budapest (1970)

    Google Scholar 

  40. Sz.-Nagy, B., Foiaş, C., Bercovici, H., Kerchy, L.: Harmonic Analysis of Operators on Hilbert Spaces, 2nd edn. Springer, New York (2010)

    Google Scholar 

  41. Sz.-Nagy B.: Sur les contractions de l’espace de Hilbert (French), Acta Sci. Math. Szeged 15, 87–92 (1953)

    Google Scholar 

  42. Timotin, D.: Regular dilations and models for multicontractions. Indiana Univ. Math. J. 47, 671–684 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Upmeier, H.: Toeplitz Operators and Index Theory in Several Complex Variables. Oper. Theory, Adv. Appl., vol. 81. Birkhäuser, Basel (1996)

    Google Scholar 

  44. Varopoulos N.Th.: On an inequality of von Neumann and an application of the metric theory of tensor products to operator theory. J. Funct. Anal. 16, 83–100 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vasilescu, F.-H.: A Martinelli type formula for the analytic functional calculus. Rev. Roumaine Math. Pures Appl. 23, 1587–1605 (1978)

    MathSciNet  MATH  Google Scholar 

  46. Vasilescu, F.-H.: Positivity conditions and standard models for commuting multioperators. Contemp. Math. vol. 185, pp. 347–365. American Mathematical Society, Providence (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caline Ambrozie or Vladimír Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

Ambrozie, C., Müller, V. (2015). Commutative Dilation Theory. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0667-1_58

Download citation

Publish with us

Policies and ethics