Skip to main content

The Beurling–Malliavin Multiplier Theorem and Its Analogs for the de Branges Spaces

  • Reference work entry
  • First Online:
Operator Theory

Abstract

Let ω be a non-negative function on \(\mathbb{R}\). Is it true that there exists a non-zero f from a given space of entire functions X satisfying

$$\displaystyle{\mbox{ (a)}\quad \vert f\vert \leq \omega \mbox{ or (b)}\quad \vert f\vert \asymp \omega?}$$

The classical Beurling–Malliavin Multiplier Theorem corresponds to (a) and the classical Paley–Wiener space as X. This is a survey of recent results for the case when X is a de Branges space \(\mathcal{H}(E)\). Numerous answers mainly depend on the behavior of the phase function of the generating function E. For example, if \(\arg E\) is regular, then for any even positive ω non-increasing on [0, ) with \(\log \omega \in L^{1}((1 + x^{2})^{-1}dx)\) there exists a non-zero \(f \in \mathcal{H}(E)\) such that | f | ≤ | E | ω. This is no longer true for the irregular case. The Toeplitz kernel approach to these problems is discussed. This method was recently developed by N. Makarov and A. Poltoratski.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Abakumov, A. Baranov, Yu. Belov, “Localization of zeros for Cauchy transforms”. Int Math Res Notices (2014). doi: 10.1093/imrn/rnu142 First published online: September 10, 2014

    Google Scholar 

  2. Azarin, V.S.: On rays of completely regular growth of an entire function. Math. USSR Sb. 8, 437–450 (1969)

    Article  Google Scholar 

  3. Baranov, A.D.: Polynomials in the de Branges spaces of entire functions. Ark. Mat. 44, 1, 16–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baranov, A.D., Khavin, V.P.: Admissible majorants for model subspaces and arguments of inner functions. Funktsional. Anal. Prilozhen. 40(4), 3–21, 111 (2006, in Russian, with Russian summary); English transl., Funct. Anal. Appl. 40(4) (2006)

    Article  MathSciNet  Google Scholar 

  5. Baranov, A.D., Borichev, A.A., Havin, V.P.: Majorants of meromorphic functions with fixed poles. Indiana Univ. Math. J. 56(4), 1595–1628 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belov, Yu.S., Khavin, V.P.: On a theorem of I. I. Privalov on the Hilbert transform of Lipschitz functions. Mat. Fiz. Anal. Geom. 11(4), 380–407 (2004, in Russian, with English, Russian and Ukrainian summaries)

    Google Scholar 

  7. Belov, Yu.S.: Criteria for the admissibility of majorants for model subspaces with a rapidly increasing argument of the generating inner function. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 345 (2007), no. Issled. po Linein. Oper. i Teor. Funkts. 34, 55–84, 141 (in Russian, with English and Russian summaries); English translation in J. Math. Sci. (N. Y.) 148(6), 813–829 (2008)

    Google Scholar 

  8. Belov, Y.: Necessary conditions for the admissibility of majorants for some model subspaces. Algebra i Analiz 20(4), 1–26 (2008, in Russian). Translation in St. Petersburg Math. J. 20(4), 507–525 (2009)

    Google Scholar 

  9. Belov, Y.: Model functions with an almost prescribed modulus. Algebra i Analiz 20(2), 3–18 (2008, in Russian); translation in St. Petersburg Math. J. 20(2), 163–174 (2009)

    Google Scholar 

  10. Beurling, A., Malliavin, P.: On Fourier transforms of measures with compact support. Acta Math. 107, 291–309 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beurling, A., Malliavin, P.: On the closure of characters and the zeros of entire functions. Acta Math. 118, 79–93 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  13. D’yakonov, K.M.: Moduli and arguments of analytic functions from subspaces in H p that are invariant under the backward shift operator. Sibirsk. Mat. Zh. 31(6), 64–79 (1990, in Russian); English transl., Siberian Math. J. 31(6), 926–939 (1990)

    MathSciNet  Google Scholar 

  14. Havin, V.P.: On the uncertainty principle in harmonic analysis. In: Byrnes, J.S. (ed.) Twentieth Century Harmonic Analysis - A Celebration, pp. 3–29. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  15. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  16. Havin, V.P., Mashreghi, J.: Admissible majorants for model subspaces of H 2. I. Slow winding of the generating inner function. Can. J. Math. 55(6), 1231–1263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Havin, V.P., Mashreghi, J.: Admissible majorants for model subspaces of H 2. II. Fast winding of the generating inner function. Can. J. Math. 55(6), 1264–1301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Havin, V.P., Mashreghi, J., Nazarov, F.: Beurling-Malliavin multiplier theorem: the 7th proof. Algebra i Analiz 17(5), 3–68 (2005)

    Google Scholar 

  19. Hruščev, S.V., Nikol’skiǐ, N.K., Pavlov, B.S.: Unconditional bases of exponentials and of reproducing kernels. In: Havin, V.P., Nikol’skiǐ, N.K. (eds.) Complex Analysis and Spectral Theory. Lecture Notes in Mathematics, vol. 864, pp. 214–335. Springer, Berlin (1981)

    Chapter  Google Scholar 

  20. Kaltenbäck, M., Woracek, H.: Hermite-Biehler functions with zeros close to the imaginary axis. Proc. Am. Math. Soc. 133(1), 245–255 (2005)

    Article  MATH  Google Scholar 

  21. Koosis, P.: The Logarithmic Integral I. Cambridge Studies in Advanced Mathematics, vol. 12. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  22. Koosis, P.: The Logarithmic Integral II. Cambridge Studies in Advanced Mathematics, vol. 21. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  23. Koosis, P.: Leçons sur le Théorème de Beurling et Malliavin. Les Publications CRM, Montréal (1996)

    MATH  Google Scholar 

  24. Levin, B.Ya.: Distribution of Zeros of Entire Functions, 632 pp. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1956, in Russian); English translation: American Mathematical Society, Providence (1964)

    Google Scholar 

  25. Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. American Mathematical Society, Providence (1996). In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko.

    Google Scholar 

  26. Lyubarskii, Yu., Malinnikova, E.: On approximation of subharmonic functions. J. Anal. Math. 83, 121–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Makarov, N., Poltoratski, A.: Meromorphic inner functions, Toeplitz kernels, and the uncertainty principile. In: Perspective in Analysis, pp. 185–252. Springer, Berlin (2005)

    Google Scholar 

  28. Makarov, N., Poltoratski, A.: Beurling-Malliavin theory for Toeplitz kernels. Invent. Math. 180(3), 443–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Malliavin, P.: On the multiplier theorem for Fourier transforms of measures with compact support. Ark. Mat. 17, 69–81 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Riesz, F.: Sur un Théorème de Maximum de Mm. Hardy et Littlewood. J. Lond. Math. Soc. 1, 10–13 (1932)

    Article  MathSciNet  Google Scholar 

  31. Woracek, H.: De Branges spaces of entire functions closed under forming difference quotients. Integr. Equ. Oper. Theory 37(2), 238–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yulmakhametov, R.S.: Approximation of subharmonic functions. Anal. Math. 11(3), 257–282 (1985, in Russian)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank A. Borichev for the permission to expose his construction illustrating the sharpness of the BM-theorem (see section “More on the Oscillations of BM-Majorants: Borichev’s Construction”). The first author was supported by the Chebyshev Laboratory (St. Petersburg State University) under RF Government grant 11.G34.31.0026, by JSC “Gazprom Neft,” and by RFBR grant 12-01-31492. The second author was supported by St. Petersburg State University Action Item 2: NIR “Function theory, operators theory and its applications” 6.38.78.2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Belov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

Belov, Y., Havin, V. (2015). The Beurling–Malliavin Multiplier Theorem and Its Analogs for the de Branges Spaces. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0667-1_2

Download citation

Publish with us

Policies and ethics