Skip to main content

Antibacterial Host Defense Peptides

  • Living reference work entry
  • First Online:
  • 282 Accesses

Synonyms

Antimicrobial peptides; Cathelicidins; Defensins; Host defense peptides

Definition

Natural antimicrobial/host defense peptides are present in a wide variety of organisms, ranging from plants and insects to mammals with complex immune systems. These peptides confer protection against infections, as well as contributing to other physiological functions which include wound healing, regulation of inflammation, and immune homeostasis. Therefore, the term host defense peptides (HDPs) is increasingly used as an accepted nomenclature to describe these molecules, to encompass both their antimicrobial and immunomodulatory functions. HDPs are typically 12–50 amino acids in length with a net positive charge ranging from +2 to +7 with ≥30 % hydrophobic residues. Cationic HDPs were first discovered in 1962, from the orange-speckled frog Bombina variegata. During the late 1970s, various groups reported HDPs, primarily α-defensins, from humans and rabbits (Phoenix et al. 2013). The landmark...

This is a preview of subscription content, log in via an institution.

References

  • Bartley, J. (2010). Vitamin D: Emerging roles in infection and immunity. Expert Review of Anti-Infective Therapy, 8(12), 1359–1369.

    Article  CAS  PubMed  Google Scholar 

  • Benincasa, M., Mattiuzzo, M., Herasimenka, Y., Cescutti, P., Rizzo, R., & Gennaro, R. (2009). Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. Journal of Peptide Science, 15(9), 595–600.

    Article  CAS  PubMed  Google Scholar 

  • Bowdish, D. M., Davidson, D. J., Speert, D. P., & Hancock, R. E. (2004). The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. Journal of Immunology, 172(6), 3758–3765.

    Article  CAS  Google Scholar 

  • Choi, K. Y., Chow, L. N., & Mookherjee, N. (2012). Cationic host defence peptides: Multifaceted role in immune modulation and inflammation. Journal of Innate Immunity, 4(4), 361–370.

    CAS  PubMed  Google Scholar 

  • Chow, J. Y., Li, Z. J., Wu, W. K., & Cho, C. H. (2013). Cathelicidin a potential therapeutic peptide for gastrointestinal inflammation and cancer. World Journal of Gastroenterology, 19(18), 2731–2735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diamond, G., Beckloff, N., Weinberg, A., & Kisich, K. O. (2009). The roles of antimicrobial peptides in innate host defense. Current Pharmaceutical Design, 15(21), 2377–2392.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dombrowski, Y., Peric, M., Koglin, S., Kammerbauer, C., Goss, C., Anz, D., et al. (2011). Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Science Translational Medicine, 3(82), 82ra38.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doss, M., White, M. R., Tecle, T., & Hartshorn, K. L. (2010). Human defensins and LL-37 in mucosal immunity. Journal of Leukocyte Biology, 87(1), 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Droin, N., Hendra, J. B., Ducoroy, P., & Solary, E. (2009). Human defensins as cancer biomarkers and antitumour molecules. Journal of Proteomics, 72(6), 918–927.

    Article  CAS  PubMed  Google Scholar 

  • Gallo, R. L. (2008). Sounding the alarm: Multiple functions of host defense peptides. Journal of Investigative Dermatology, 128(1), 5–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ganz, T., Metcalf, J. A., Gallin, J. I., Boxer, L. A., & Lehrer, R. I. (1988). Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. Journal of Clinical Investigation, 82(2), 552–556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L. D., Silva-Pereira, I., & Kyaw, C. M. (2013). Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology, 4, 353.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hancock, R. E., & Diamond, G. (2000). The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology, 8(9), 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R. E., Nijnik, A., & Philpott, D. J. (2012). Modulating immunity as a therapy for bacterial infections. Nature Reviews Microbiology, 10(4), 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Hilchie, A. L., Wuerth, K., & Hancock, R. E. (2013). Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology, 9(12), 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Hultmark, D., Steiner, H., Rasmuson, T., & Boman, H. G. (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem. 106(1), 7–16.

    Google Scholar 

  • Jo, E. K. (2010). Innate immunity to mycobacteria: Vitamin D and autophagy. Cellular Microbiology, 12(8), 1026–1035.

    Article  CAS  PubMed  Google Scholar 

  • Jorge, P., Lourenco, A., & Pereira, M. O. (2012). New trends in peptide-based anti-biofilm strategies: A review of recent achievements and bioinformatic approaches. Biofouling, 28(10), 1033–1061.

    Article  CAS  PubMed  Google Scholar 

  • Kanda, N., Ishikawa, T., Kamata, M., Tada, Y., & Watanabe, S. (2010). Increased serum leucine, leucine-37 levels in psoriasis: Positive and negative feedback loops of leucine, leucine-37 and pro- or anti-inflammatory cytokines. Human Immunology, 71(12), 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  • Lande, R., Ganguly, D., Facchinetti, V., Frasca, L., Conrad, C., Gregorio, J., et al. (2011). Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Science Translational Medicine, 3(73), 73ra19.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim, R., Lappas, M., Riley, C., Borregaard, N., Moller, H. J., Ahmed, N., et al. (2013). Investigation of human cationic antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as potential biomarkers for ovarian cancer. Journal Ovarian Research, 6(1), 5.

    Article  CAS  Google Scholar 

  • Mookherjee, N., Rehaume, L. M., & Hancock, R. E. (2007). Cathelicidins and functional analogues as antisepsis molecules. Expert Opinion on Therapeutic Targets, 11(8), 993–1004.

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee, N., Lippert, D. N., Hamill, P., Falsafi, R., Nijnik, A., Kindrachuk, J., et al. (2009). Intracellular receptor for human host defense peptide LL-37 in monocytes. Journal of Immunology, 183(4), 2688–2696.

    Article  CAS  Google Scholar 

  • Murakami, M., Lopez-Garcia, B., Braff, M., Dorschner, R. A., & Gallo, R. L. (2004). Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. Journal of Immunology, 172(5), 3070–3077.

    Article  CAS  Google Scholar 

  • Nagaoka, I., Tamura, H., & Hirata, M. (2006). An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. Journal of Immunology, 176(5), 3044–3052.

    Article  CAS  Google Scholar 

  • Phoenix, D. A., Dennison, S. R., Harris, F. (2013). Antimicrobial peptides: Their history, evolution, and functional promiscuity. In: Antimicrobial peptides (pp. 1–37). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Google Scholar 

  • Putsep, K., Carlsson, G., Boman, H. G., & Andersson, M. (2002). Deficiency of antibacterial peptides in patients with morbus Kostmann: An observation study. Lancet, 360(9340), 1144–1149.

    Article  CAS  PubMed  Google Scholar 

  • Selsted, M. E., et al. (2005). Nature Immunology, 6, 551.

    Article  CAS  PubMed  Google Scholar 

  • Soehnlein, O., Kai-Larsen, Y., Frithiof, R., Sorensen, O. E., Kenne, E., Scharffetter-Kochanek, K., et al. (2008). Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. Journal of Clinical Investigation, 118(10), 3491–3502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorensen, O. E., Follin, P., Johnsen, A. H., Calafat, J., Tjabringa, G. S., Hiemstra, P. S., et al. (2001). Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood, 97(12), 3951–3959.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, O. E., Gram, L., Johnsen, A. H., Andersson, E., Bangsboll, S., Tjabringa, G. S., et al. (2003). Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: A novel mechanism of generating antimicrobial peptides in vagina. Journal of Biological Chemistry, 278(31), 28540–28546.

    Article  CAS  PubMed  Google Scholar 

  • Tomasinsig, L., & Zanetti, M. (2005). The cathelicidins–structure, function and evolution. Current Protein and Peptide Science, 6(1), 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Valore, E. V., & Ganz, T. (1992). Posttranslational processing of defensins in immature human myeloid cells. Blood, 79(6), 1538–1544.

    CAS  PubMed  Google Scholar 

  • Vandamme, D., et al. (2012). Cell Immunology, 280, 22.

    Article  CAS  Google Scholar 

  • Yeung, A., et al. (2011). Cellular & Molecular Life Sciences, 68, 2161–2176.

    Article  CAS  Google Scholar 

  • Zasloff, M. (2005). Sunlight, vitamin D, and the innate immune defenses of the human skin. Journal of Investigative Dermatology, 125(5), xvi–xvii.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeloffer Mookherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this entry

Cite this entry

Piyadasa, H., Choi, KY.G., Mookherjee, N. (2014). Antibacterial Host Defense Peptides. In: Parnham, M. (eds) Encyclopedia of Inflammatory Diseases. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0620-6_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0620-6_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Online ISBN: 978-3-0348-0620-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics