Skip to main content

Genetics of Lipid Disorders

  • Reference work entry
  • First Online:
Metabolic Syndrome
  • 261 Accesses

Abstract

This chapter focuses on the genetics of common lipid disorders, collectively referred to as “dyslipidemia,” a component of the metabolic syndrome (MetSyn). We begin by providing a brief background on the lipids discussed in this chapter. Then, we discuss specific variants in key candidate genes and their role in related pathways that have been associated with individual lipid levels and dyslipidemia in larger-scale studies. In addition, we comment on associations observed in genome-wide association studies (GWAS) and sequencing studies. We also discuss how the use of more sophisticated statistical methods (e.g., genetic risk scores and pathway modeling) are helping to better understand the collective effects of multiple variants in multiple genes on these lipid traits. We conclude by providing perspectives for future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271:518–20.

    Article  CAS  PubMed  Google Scholar 

  2. Agerholm-Larsen B, Tybjaerg-Hansen A, Schnohr P, et al. Common cholesteryl ester transfer protein mutations, decreased HDL cholesterol, and possible decreased risk of ischemic heart disease: the Copenhagen City Heart Study. Circulation. 2000;102:2197–203.

    Article  CAS  PubMed  Google Scholar 

  3. Ahn YI, Kamboh MI, Hamman RF, et al. Two DNA polymorphisms in the lipoprotein lipase gene and their associations with factors related to cardiovascular disease. J Lipid Res. 1993;34:421–8.

    Article  CAS  PubMed  Google Scholar 

  4. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.

    Article  CAS  PubMed  Google Scholar 

  5. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet. 2005;366:1059–62.

    Article  PubMed  Google Scholar 

  6. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  CAS  PubMed  Google Scholar 

  7. Alshahid M, Wakil SM, Al-Najai M, et al. New susceptibility locus for obesity and dyslipidaemia on chromosome 3q22.3. Hum Genomics. 2013;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andersen RV, Wittrup HH, Tybjaerg-Hansen A, et al. Hepatic lipase mutations, elevated high-density lipoprotein cholesterol, and increased risk of ischemic heart disease: the Copenhagen City Heart Study. J Am Coll Cardiol. 2003;41:1972–82.

    Article  CAS  PubMed  Google Scholar 

  9. Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J. 1991;121:293–8.

    Article  CAS  PubMed  Google Scholar 

  10. Anoop S, Misra A, Meena K, et al. Apolipoprotein E polymorphism in cerebrovascular & coronary heart diseases. Indian J Med Res. 2010;132:363–78.

    CAS  PubMed  Google Scholar 

  11. Arai Y, Hirose N. Aging and HDL metabolism in elderly people more than 100 years old. J Atheroscler Thromb. 2004;11:246–52.

    Article  CAS  PubMed  Google Scholar 

  12. Aung LH, Yin RX, Wu DF, et al. Association of the variants in the BUD13-ZNF259 genes and the risk of hyperlipidaemia. J Cell Mol Med. 2014;18:1417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Austin MA, King MC, Vranizan KM, et al. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82:495–506.

    Article  CAS  PubMed  Google Scholar 

  14. Bakker BM, van Eunen K, Jeneson JA, et al. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models. Biochem Soc Trans. 2010;38:1294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med. 1999;16:442–3.

    Article  CAS  PubMed  Google Scholar 

  16. Benn M. Apolipoprotein B, levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review. Atherosclerosis. 2009;206:17–30.

    Article  CAS  PubMed  Google Scholar 

  17. Bernstein MS, Costanza MC, James RW, et al. No physical activity x CETP 1b.-629 interaction effects on lipid profile. Med Sci Sports Exerc. 2003;35:1124–9.

    Article  CAS  PubMed  Google Scholar 

  18. Blankenberg S, Tiret L, Bickel C, et al. Genetic variation of the cholesterol ester transfer protein gene and the prevalence of coronary artery disease. The AtheroGene case control study. Z Kardiol. 2004;93(Suppl 4):IV16–23.

    PubMed  Google Scholar 

  19. Blatter Garin MC, Moren X, James RW. Paraoxonase-1 and serum concentrations of HDL-cholesterol and apoA-I. J Lipid Res. 2006;47:515–20.

    Article  PubMed  Google Scholar 

  20. Boekholdt SM, Thompson JF. Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res. 2003;44:1080–93.

    Article  CAS  PubMed  Google Scholar 

  21. Boekholdt SM, Sacks FM, Jukema JW, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation. 2005;111:278–87.

    Article  CAS  PubMed  Google Scholar 

  22. Boekholdt SM, Souverein OW, Tanck MW, et al. Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cholesterol levels. Clin Genet. 2006;69:263–70.

    Article  CAS  PubMed  Google Scholar 

  23. Boes E, Coassin S, Kollerits B, et al. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: a systematic in-depth review. Exp Gerontol. 2009;44:136–60.

    Article  CAS  PubMed  Google Scholar 

  24. Borggreve SE, Hillege HL, Wolffenbuttel BH, et al. PREVEND Study Group. The effect of cholesteryl ester transfer protein -629C->A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J Clin Endocrinol Metab. 2005;90(7):4198–204. https://doi.org/10.1210/jc.2005-0182. Epub 2005 Apr 19. PMID: 15840744.

  25. Brown CM, Rea TJ, Hamon SC, et al. The contribution of individual and pairwise combinations of SNPs in the APOA1 and APOC3 genes to interindividual HDL-C variability. J Mol Med (Berl). 2006;84:561–72.

    Article  CAS  PubMed  Google Scholar 

  26. Burkhardt R, Kenny EE, Lowe JK, et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb Vasc Biol. 2008;28:2078–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlquist J, Anderson JL. Inconsistencies in the genetic prediction of HDL cholesterol versus atherosclerosis. Curr Opin Cardiol. 2007;22:352–8.

    Article  PubMed  Google Scholar 

  28. Cavelier C, Rohrer L, von Eckardstein A. ATP-binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells. Circ Res. 2006;99:1060–6.

    Article  CAS  PubMed  Google Scholar 

  29. Chang MH, Yesupriya A, Ned RM, et al. Genetic variants associated with fasting blood lipids in the U.S. population: third national health and nutrition examination survey. BMC Med Genet. 2010;11:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen K, Williams KJ. Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J Biol Chem. 2013;288:13988–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen SN, Ballantyne CM, Gotto AM Jr, et al. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol. 2005;45:1611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clee SM, Zwinderman AH, Engert JC, et al. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation. 2001;103:1198–205.

    Article  CAS  PubMed  Google Scholar 

  33. Cohen JC, Pertsemlidis A, Fahmi S, et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A. 2006;103:1810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corella D, Guillen M, Saiz C, et al. Associations of LPL and APOC3 gene polymorphisms on plasma lipids in a Mediterranean population: interaction with tobacco smoking and the APOE locus. J Lipid Res. 2002;43:416–27.

    Article  CAS  PubMed  Google Scholar 

  35. Costanza MC, Cayanis E, Ross BM, et al. Relative contributions of genes, environment, and interactions to blood lipid concentrations in a general adult population. Am J Epidemiol. 2005;161:714–24.

    Article  PubMed  Google Scholar 

  36. Cox AJ, Hsu FC, Ng MC, et al. Genetic risk score associations with cardiovascular disease and mortality in the Diabetes Heart Study. Diabetes Care. 2014;37:1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Croft DP, Madden JR, Franks DW, et al. Hypothesis testing in animal social networks. Trends Ecol Evol. 2011;26:502–7.

    Article  PubMed  Google Scholar 

  38. Davignon J, Dubuc G, Seidah NG. The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr Atheroscler Rep. 2010;12:308–15.

    Article  CAS  PubMed  Google Scholar 

  39. de Andrade FM, Silveira FR, Arsand M, et al. Association between −250G/A polymorphism of the hepatic lipase gene promoter and coronary artery disease and HDL-C levels in a Southern Brazilian population. Clin Genet. 2004;65:390–5.

    Google Scholar 

  40. De Castro-Oros I, Perez-Lopez J, Mateo-Gallego R, et al. A genetic variant in the LDLR promoter is responsible for part of the LDL-cholesterol variability in primary hypercholesterolemia. BMC Med Genet. 2014;7:17.

    Google Scholar 

  41. Dumitrescu L, Carty CL, Taylor K, et al. Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study. PLoS Genet. 2011;7(6):e1002138. https://doi.org/10.1371/journal.pgen.1002138. Epub 2011 Jun 30. PMID: 21738485.

  42. Edwards KL, Newman B, Mayer E, et al. Heritability of factors of the insulin resistance syndrome in women twins. Genet Epidemiol. 1997;14:241–53.

    Article  CAS  PubMed  Google Scholar 

  43. Eichner JE, Dunn ST, Perveen G, et al. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol. 2002;155:487–95.

    Article  PubMed  Google Scholar 

  44. Eiriksdottir G, Bolla MK, Thorsson B, et al. The −629C > A polymorphism in the CETP gene does not explain the association of TaqIB polymorphism with risk and age of myocardial infarction in Icelandic men. Atherosclerosis. 2001;159:187–92.

    Google Scholar 

  45. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992;33:1569–82.

    Article  CAS  PubMed  Google Scholar 

  46. Evans D, Beil FU. The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women. BMC Med Genet. 2006;7:66.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  48. Fang DZ, Liu BW. Polymorphism of HL +1075C, but not −480 T, is associated with plasma high density lipoprotein cholesterol and apolipoprotein AI in men of a Chinese population. Atherosclerosis. 2002;161:417–24.

    Article  CAS  PubMed  Google Scholar 

  49. Foley EM, Gordts PL, Stanford KI, et al. Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arterioscler Thromb Vasc Biol. 2013;33:2065–74.

    Article  CAS  PubMed  Google Scholar 

  50. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Article  PubMed  Google Scholar 

  51. Freeman DJ, Samani NJ, Wilson V, et al. A polymorphism of the cholesteryl ester transfer protein gene predicts cardiovascular events in non-smokers in the West of Scotland coronary Prevention Study. Eur Heart J. 2003;24:1833–42.

    Article  CAS  PubMed  Google Scholar 

  52. Frikke-Schmidt R, Tybjaerg-Hansen A, Steffensen R, et al. Apolipoprotein E genotype: epsilon32 women are protected while epsilon43 and epsilon44 men are susceptible to ischemic heart disease: the Copenhagen City Heart Study. J Am Coll Cardiol. 2000;35:1192–9.

    Article  CAS  PubMed  Google Scholar 

  53. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, et al. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest. 2004;114:1343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujimaki T, Kato K, Oguri M, et al. Association of a polymorphism of BTN2A1 with dyslipidemia in East Asian populations. Exp Ther Med. 2011;2:745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292–301.

    Article  CAS  PubMed  Google Scholar 

  56. Garg A, Simha V. Update on dyslipidemia. J Clin Endocrinol Metab. 2007;92:1581–9.

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996;37:693–707.

    Article  CAS  PubMed  Google Scholar 

  58. Goode EL, Cherny SS, Christian JC, et al. Heritability of longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins. Twin Res Hum Genet. 2007;10:703–11.

    Article  PubMed  Google Scholar 

  59. Graf GA, Yu L, Li WP, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem. 2003;278:48275–82.

    Article  CAS  PubMed  Google Scholar 

  60. Grallert H, Sedlmeier EM, Huth C, et al. APOA5 variants and metabolic syndrome in Caucasians. J Lipid Res. 2007;48:2614–21.

    Article  CAS  PubMed  Google Scholar 

  61. Grarup N, Andreasen CH, Andersen MK, et al. The −250G > A promoter variant in hepatic lipase associates with elevated fasting serum high-density lipoprotein cholesterol modulated by interaction with physical activity in a study of 16,156 Danish subjects. J Clin Endocrinol Metab. 2008;93:2294–9.

    Google Scholar 

  62. Gronroos P, Raitakari OT, Kahonen M, et al. Relation of apolipoprotein E polymorphism to markers of early atherosclerotic changes in young adults – the Cardiovascular Risk in Young Finns Study. Circ J. 2008;72:29–34.

    Article  CAS  PubMed  Google Scholar 

  63. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. J Am Coll Cardiol. 2004;44:720–32.

    Article  PubMed  Google Scholar 

  64. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol. 2006;21:1–6.

    Article  PubMed  Google Scholar 

  65. Gu SJ, Guo ZR, Zhou ZY, et al. PPAR alpha and PPAR gamma polymorphisms as risk factors for dyslipidemia in a Chinese Han population. Lipids Health Dis. 2014a;13:23.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gu SJ, Guo ZR, Zhou ZY, et al. Peroxisome proliferator‑activated receptor γ polymorphisms as risk factors for dyslipidemia. Mol Med Rep. 2014b;10(5):2759–63. https://doi.org/10.3892/mmr.2014.2553. Epub 2014 Sep 10. PMID: 25216344.

  67. Gutierrez-Cirlos C, Ordonez-Sanchez ML, Tusie-Luna MT, et al. Familial hypobetalipoproteinemia in a hospital survey: genetics, metabolism and non-alcoholic fatty liver disease. Ann Hepatol. 2011;10:155–64.

    Article  PubMed  Google Scholar 

  68. Haas BE, Weissglas-Volkov D, Aguilar-Salinas CA, et al. Evidence of how rs7575840 influences apolipoprotein B-containing lipid particles. Arterioscler Thromb Vasc Biol. 2011;31:1201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Halpern A, Mancini MC, Magalhaes ME, et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol Metab Syndr. 2010;2:55.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hassing HC, Surendran RP, Derudas B, et al. SULF2 strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus. Obesity (Silver Spring). 2014;22:1309–16.

    Article  CAS  PubMed  Google Scholar 

  71. Hegele RA, Brunt JH, Connelly PW. Multiple genetic determinants of variation of plasma lipoproteins in Alberta Hutterites. Arterioscler Thromb Vasc Biol. 1995;15:861–71.

    Article  CAS  PubMed  Google Scholar 

  72. Hegele RA, Guy J, Ban MR, et al. NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis. 2005;4:16.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Heid IM, Boes E, Muller M, et al. Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. Circ Cardiovasc Genet. 2008;1:10–20.

    Article  CAS  PubMed  Google Scholar 

  74. Herbeth B, Samara A, Ndiaye C, et al. Metabolic syndrome-related composite factors over 5 years in the STANISLAS family study: genetic heritability and common environmental influences. Clin Chim Acta. 2010;411:833–9.

    Article  CAS  PubMed  Google Scholar 

  75. Hiramatsu M, Oguri M, Kato K, et al. Synergistic effects of genetic variants of APOA5 and BTN2A1 on dyslipidemia or metabolic syndrome. Int J Mol Med. 2012;30:185–92.

    CAS  PubMed  Google Scholar 

  76. Hiura Y, Tabara Y, Kokubo Y, et al. Association of the functional variant in the 3-hydroxy-3-methylglutaryl-coenzyme a reductase gene with low-density lipoprotein-cholesterol in Japanese. Circ J. 2010;74:518–22.

    Article  CAS  PubMed  Google Scholar 

  77. Hodoglugil U, Williamson DW, Huang Y, et al. Common polymorphisms of ATP binding cassette transporter A1, including a functional promoter polymorphism, associated with plasma high density lipoprotein cholesterol levels in Turks. Atherosclerosis. 2005;183:199–212.

    Article  CAS  PubMed  Google Scholar 

  78. Holmer SR, Hengstenberg C, Mayer B, et al. Lipoprotein lipase gene polymorphism, cholesterol subfractions and myocardial infarction in large samples of the general population. Cardiovasc Res. 2000;47:806–12.

    Article  CAS  PubMed  Google Scholar 

  79. Horibe H, Ueyama C, Fujimaki T, et al. Association of a polymorphism of BTN2A1 with dyslipidemia in community-dwelling individuals. Mol Med Rep. 2014;9:808–12.

    Article  CAS  PubMed  Google Scholar 

  80. Hsu LA, Ko YL, Wu S, et al. Association between a novel 11-base pair deletion mutation in the promoter region of the scavenger receptor class B type I gene and plasma HDL cholesterol levels in Taiwanese Chinese. Arterioscler Thromb Vasc Biol. 2003;23:1869–74.

    Article  CAS  PubMed  Google Scholar 

  81. Huang CC, Fornage M, Lloyd-Jones DM, et al. Longitudinal association of PCSK9 sequence variations with low-density lipoprotein cholesterol levels: the Coronary Artery Risk Development in Young Adults Study. Circ Cardiovasc Genet. 2009;2:354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hubacek JA. Apolipoprotein A5 and triglyceridemia. Focus on the effects of the common variants. Clin Chem Lab Med. 2005;43:897–902.

    Article  CAS  PubMed  Google Scholar 

  83. Hutter CM, Austin MA, Farin FM, et al. Association of endothelial lipase gene (LIPG) haplotypes with high-density lipoprotein cholesterol subfractions and apolipoprotein AI plasma levels in Japanese Americans. Atherosclerosis. 2006;185:78–86.

    Article  CAS  PubMed  Google Scholar 

  84. Iijima H, Emi M, Wada M, et al. Association of an intronic haplotype of the LIPC gene with hyperalphalipoproteinemia in two independent populations. J Hum Genet. 2008;53:193–200.

    Article  CAS  PubMed  Google Scholar 

  85. Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J. 2008;55:617–24.

    Article  CAS  PubMed  Google Scholar 

  86. Isaacs A, Sayed-Tabatabaei FA, Njajou OT, et al. The −514 C- > T hepatic lipase promoter region polymorphism and plasma lipids: a meta-analysis. J Clin Endocrinol Metab. 2004;89:3858–63.

    Article  CAS  PubMed  Google Scholar 

  87. Isaacs A, Aulchenko YS, Hofman A, Maitland-van der Zee AH, Stricker BH, Oostra BA, Witteman JC, van Duijn CM, et al. Epistatic effect of cholesteryl ester transfer protein and hepatic lipase on serum high-density lipoprotein cholesterol levels. J Clin Endocrinol Metab. 2007;92:2680–7.

    Article  CAS  PubMed  Google Scholar 

  88. Jakulj L, Vissers MN, Tanck MW, et al. ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis. J Lipid Res. 2010;51:3016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jaye M, Krawiec J. Endothelial lipase and HDL metabolism. Curr Opin Lipidol. 2004;15:183–9.

    Article  CAS  PubMed  Google Scholar 

  90. Johansen CT, Hegele RA. Genetic bases of hypertriglyceridemic phenotypes. Curr Opin Lipidol. 2011;22:247–53.

    Article  CAS  PubMed  Google Scholar 

  91. Johansen CT, Wang J, Lanktree MB, et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2011;31(8):1916–26. https://doi.org/10.1161/ATVBAHA.111.226365. Epub 2011 May 19.PMID: 21597005.

  92. Kamboh MI, Bunker CH, Aston CE, et al. Genetic association of five apolipoprotein polymorphisms with serum lipoprotein-lipid levels in African blacks. Genet Epidemiol. 1999;16:205–22.

    Article  CAS  PubMed  Google Scholar 

  93. Kashiwabara Y, Kobayashi Y, Koba S, et al. Gene polymorphism and frequencies of the NPC1L1 gene (rs2072183, rs217434 and rs217428) in Japanese patients with dyslipidemia. J Clin Pharm Ther. 2014;39:551–4.

    Article  CAS  PubMed  Google Scholar 

  94. Kataoka S, Robbins DC, Cowan LD, et al. Apolipoprotein E polymorphism in American Indians and its relation to plasma lipoproteins and diabetes. The Strong Heart Study. Arterioscler Thromb Vasc Biol. 1996;16:918–25.

    Article  CAS  PubMed  Google Scholar 

  95. Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaulfers AM, Deka R, Dolan L, et al. Association of INSIG2 polymorphism with overweight and LDL in children. PLoS One. 2015;10:e0116340.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Keebler ME, Sanders CL, Surti A, et al. Association of blood lipids with common DNA sequence variants at 19 genetic loci in the multiethnic United States National Health and Nutrition Examination Survey III. Circ Cardiovasc Genet. 2009;2:238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kitzmiller JP, Binkley PF, Pandey SR, et al. Statin pharmacogenomics: pursuing biomarkers for predicting clinical outcomes. Discov Med. 2013;16:45–51.

    PubMed  PubMed Central  Google Scholar 

  99. Klerkx AH, Tanck MW, Kastelein JJ, et al. Haplotype analysis of the CETP gene: not TaqIB, but the closely linked −629C → A polymorphism and a novel promoter variant are independently associated with CETP concentration. Hum Mol Genet. 2003;12:111–23.

    Google Scholar 

  100. Klos KL, Kullo IJ. Genetic determinants of HDL: monogenic disorders and contributions to variation. Curr Opin Cardiol. 2007;22:344–51.

    Article  PubMed  Google Scholar 

  101. Klos KL, Sing CF, Boerwinkle E, et al. Consistent effects of genes involved in reverse cholesterol transport on plasma lipid and apolipoprotein levels in CARDIA participants. Arterioscler Thromb Vasc Biol. 2006;26(8):1828–36. https://doi.org/10.1161/01.ATV.0000231523.19199.45. Epub 2006 Jun 8. PMID: 16763159.

  102. Ko YL, Hsu LA, Hsu KH, et al. The interactive effects of hepatic lipase gene promoter polymorphisms with sex and obesity on high-density-lipoprotein cholesterol levels in Taiwanese-Chinese. Atherosclerosis. 2004;172:135–42.

    Article  CAS  PubMed  Google Scholar 

  103. Komurcu-Bayrak E, Onat A, Poda M, et al. The S447X variant of lipoprotein lipase gene is associated with metabolic syndrome and lipid levels among Turks. Clin Chim Acta. 2007;383:110–5.

    Article  CAS  PubMed  Google Scholar 

  104. Kronenberg F, Coon H, Ellison RC, et al. Segregation analysis of HDL cholesterol in the NHLBI Family Heart Study and in Utah pedigrees. Eur J Hum Genet. 2002;10:367–74.

    Article  CAS  PubMed  Google Scholar 

  105. Kwan BC, Kronenberg F, Beddhu S, et al. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007;18:1246–61.

    Article  CAS  PubMed  Google Scholar 

  106. Lahiry P, Ban MR, Pollex RL, et al. Common variants APOC3, APOA5, APOE and PON1 are associated with variation in plasma lipoprotein traits in Greenlanders. Int J Circumpolar Health. 2007;66:390–400.

    Article  PubMed  Google Scholar 

  107. Lai CQ, Tai ES, Tan CE, et al. The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore. J Lipid Res. 2003;44:2365–73.

    Article  CAS  PubMed  Google Scholar 

  108. Lai CQ, Demissie S, Cupples LA, et al. Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study. J Lipid Res. 2004;45:2096–105.

    Article  CAS  PubMed  Google Scholar 

  109. Lange LA, Hu Y, Zhang H, et al. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am J Hum Genet. 2014;94:233–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lanktree MB, Anand SS, Yusuf S, et al. Replication of genetic associations with plasma lipoprotein traits in a multiethnic sample. J Lipid Res. 2009;50:1487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Larson IA, Ordovas JM, Barnard JR, et al. Effects of apolipoprotein A-I genetic variations on plasma apolipoprotein, serum lipoprotein and glucose levels. Clin Genet. 2002;61:176–84.

    Article  CAS  PubMed  Google Scholar 

  112. Lee J, Tan CS, Chia KS, et al. The lipoprotein lipase S447X polymorphism and plasma lipids: interactions with APOE polymorphisms, smoking, and alcohol consumption. J Lipid Res. 2004;45:1132–9.

    Article  CAS  PubMed  Google Scholar 

  113. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96:1221–32.

    Article  CAS  PubMed  Google Scholar 

  114. Littlewood TD, Bennett MR. Apoptotic cell death in atherosclerosis. Curr Opin Lipidol. 2003;14:469–75.

    Article  CAS  PubMed  Google Scholar 

  115. Liu L, Aboud O, Jones RA, et al. Apolipoprotein E expression is elevated by interleukin 1 and other interleukin 1-induced factors. J Neuroinflammation. 2011;8:175. https://doi.org/10.1186/1742-2094-8-175. PMID: 22171672.

  116. Lou XY, Chen GB, Yan L, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet. 2007;80:1125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lusis AJ, Attie AD, Reue K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet. 2008;9:819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma K, Cilingiroglu M, Otvos JD, et al. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A. 2003;100:2748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 1991;286:152–4.

    Article  CAS  PubMed  Google Scholar 

  120. Maeda T, Honda A, Ishikawa T, et al. A SNP of NPC1L1 affects cholesterol absorption in Japanese. J Atheroscler Thromb. 2010;17:356–60.

    Article  CAS  PubMed  Google Scholar 

  121. Mailly F, Tugrul Y, Reymer PW, et al. A common variant in the gene for lipoprotein lipase (Asp9 → Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol. 1995;15:468–78.

    Article  CAS  PubMed  Google Scholar 

  122. Mank-Seymour AR, Durham KL, Thompson JF, et al. Association between single-nucleotide polymorphisms in the endothelial lipase (LIPG) gene and high-density lipoprotein cholesterol levels. Biochim Biophys Acta. 2004;1636:40–6.

    Article  CAS  PubMed  Google Scholar 

  123. Manresa JM, Zamora A, Tomas M, et al. Relationship of classical and non-classical risk factors with genetic variants relevant to coronary heart disease. Eur J Cardiovasc Prev Rehabil. 2006;13:738–44.

    Article  PubMed  Google Scholar 

  124. Martinson ML, Teitler JO, Reichman NE. Health across the life span in the United States and England. Am J Epidemiol. 2011;173:858–65.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Matikainen N, Burza MA, Romeo S, et al. Genetic variation in SULF2 is associated with postprandial clearance of triglyceride-rich remnant particles and triglyceride levels in healthy subjects. PLoS One. 2013;8:e79473.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci U S A. 2005;102:2069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. McCaskie PA, Cadby G, Hung J, et al. The C-480 T hepatic lipase polymorphism is associated with HDL-C but not with risk of coronary heart disease. Clin Genet. 2006;70:114–21.

    Article  CAS  PubMed  Google Scholar 

  128. McCaskie PA, Beilby JP, Chapman CM, et al. Cholesteryl ester transfer protein gene haplotypes, plasma high-density lipoprotein levels and the risk of coronary heart disease. Hum Genet. 2007;121:401–11.

    Article  CAS  PubMed  Google Scholar 

  129. Miettinen HE, Gylling H, Tenhunen J, et al. Molecular genetic study of Finns with hypoalphalipoproteinemia and hyperalphalipoproteinemia: a novel Gly230 Arg mutation (LCAT[Fin]) of lecithin:cholesterol acyltransferase (LCAT) accounts for 5% of cases with very low serum HDL cholesterol levels. Arterioscler Thromb Vasc Biol. 1998;18:591–8.

    Article  CAS  PubMed  Google Scholar 

  130. Miller M, Zhan M. Genetic determinants of low high-density lipoprotein cholesterol. Curr Opin Cardiol. 2004;19:380–4.

    Article  PubMed  Google Scholar 

  131. Miller M, Rhyne J, Hamlette S, et al. Genetics of HDL regulation in humans. Curr Opin Lipidol. 2003;14:273–9.

    Article  CAS  PubMed  Google Scholar 

  132. Morabia A, Ross BM, Costanza MC, et al. Population-based study of SR-BI genetic variation and lipid profile. Atherosclerosis. 2004;175:159–68.

    Article  CAS  PubMed  Google Scholar 

  133. Muiya NP, Wakil S, Al-Najai M, et al. A study of the role of GATA2 gene polymorphism in coronary artery disease risk traits. Gene. 2014;544:152–8.

    Article  CAS  PubMed  Google Scholar 

  134. Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther. 1996;70:101–35.

    Article  CAS  PubMed  Google Scholar 

  135. Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nettleton JA, Steffen LM, Ballantyne CM, et al. Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults. Atherosclerosis. 2007;194:e131–40.

    Article  CAS  PubMed  Google Scholar 

  137. Nock NL, Chandran Pillai APL. Dyslipidemia: genetics and role in the metabolic syndrome. In: Kelishadi R, editor. Dyslipidemia – from prevention to treatment. Rijeka: InTech; 2012.

    Google Scholar 

  138. Nock N, Zhang L. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling. BMC Proc. 2011;5(Suppl 9):S47.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nock NL, Wang X, Thompson CL, et al. Defining genetic determinants of the Metabolic Syndrome in the Framingham Heart Study using association and structural equation modeling methods. BMC Proc. 2009;3(Suppl 7):S50.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ogg SL, Weldon AK, Dobbie L, et al. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci U S A. 2004;101:10084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ordovas JM, Cupples LA, Corella D, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol. 2000;20:1323–9.

    Article  CAS  PubMed  Google Scholar 

  142. Osgood D, Corella D, Demissie S, et al. Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the Framingham study. J Clin Endocrinol Metab. 2003;88:2869–79.

    Article  CAS  PubMed  Google Scholar 

  143. Ota VK, Chen ES, Ejchel TF, et al. APOA4 polymorphism as a risk factor for unfavorable lipid serum profile and depression: a cross-sectional study. J Investig Med. 2011;59:966–70.

    Article  CAS  PubMed  Google Scholar 

  144. Pallaud C, Sass C, Zannad F, et al. APOC3, CETP, fibrinogen, and MTHFR are genetic determinants of carotid intima-media thickness in healthy men (the Stanislas cohort). Clin Genet. 2001;59:316–24.

    Article  CAS  PubMed  Google Scholar 

  145. Paradis ME, Couture P, Bosse Y, et al. The T111I mutation in the EL gene modulates the impact of dietary fat on the HDL profile in women. J Lipid Res. 2003;44:1902–8.

    Article  CAS  PubMed  Google Scholar 

  146. Pare G, Serre D, Brisson D, et al. Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between endothelin-1 and high-density lipoprotein cholesterol. Am J Hum Genet. 2007;80:673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Parra EJ, Below JE, Krithika S, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County. Texas Diabetol. 2011;54:2038–46.

    Article  CAS  Google Scholar 

  148. Pencina MJ, D’Agostino RB. Evaluation of the Framingham risk score in the European Prospective Investigation of Cancer-Norfolk cohort-invited commentary. Arch Intern Med. 2008;168:1216–8.

    Article  PubMed  Google Scholar 

  149. Polisecki E, Muallem H, Maeda N, et al. Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis. 2008;200:109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Porchay I, Pean F, Bellili N, et al. ABCA1 single nucleotide polymorphisms on high-density lipoprotein-cholesterol and overweight: the D.E.S.I.R. study. Obesity (Silver Spring). 2006;14:1874–9.

    Article  CAS  PubMed  Google Scholar 

  151. Povel CM, Boer JM, Imholz S, et al. Genetic variants in lipid metabolism are independently associated with multiple features of the metabolic syndrome. Lipids Health Dis. 2011;10:118. https://doi.org/10.1186/1476-511X-10-118. PMID: 21767357.

  152. Qi L, Liu S, Rifai N, et al. Associations of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride and HDL cholesterol levels in women with type 2 diabetes. Atherosclerosis. 2007;192:204–10.

    Article  CAS  PubMed  Google Scholar 

  153. Radha V, Mohan V, Vidya R, et al. Association of lipoprotein lipase Hind III and Ser 447 Ter polymorphisms with dyslipidemia in Asian Indians. Am J Cardiol. 2006;97:1337–42.

    Article  CAS  PubMed  Google Scholar 

  154. Rankinen T, Sarzynski MA, Ghosh S, et al. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res. 2015;116:909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Remaley AT, Stonik JA, Demosky SJ, et al. Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem Biophys Res Commun. 2001;280:818–23.

    Article  CAS  PubMed  Google Scholar 

  156. Rigotti A, Trigatti B, Babitt J, et al. Scavenger receptor BI – a cell surface receptor for high density lipoprotein. Curr Opin Lipidol. 1997;8:181–8.

    Article  CAS  PubMed  Google Scholar 

  157. Rios DL, D’Onofrio LO, Cerqueira CC, et al. Paraoxonase 1 gene polymorphisms in angiographically assessed coronary artery disease: evidence for gender interaction among Brazilians. Clin Chem Lab Med. 2007;45:874–8.

    Article  CAS  PubMed  Google Scholar 

  158. Rip J, Nierman MC, Ross CJ, et al. Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol. 2006;26:1236–45.

    Article  CAS  PubMed  Google Scholar 

  159. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Roberts CG, Shen H, Mitchell BD, et al. Variants in scavenger receptor class B type I gene are associated with HDL cholesterol levels in younger women. Hum Hered. 2007;64:107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rosen SD, Lemjabbar-Alaoui H. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets. 2010;14:935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rosen EY, Wexler EM, Versano R, et al. Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron. 2011;71:1030–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Roth GA, Fihn SD, Mokdad AH. High total serum cholesterol, medication coverage and therapeutic control: an analysis of national health examination survey data from eight countries. Bull World Health Organ. 2010;89:92–101.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Russo GT, Meigs JB, Cupples LA, et al. Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: the Framingham offspring study. Atherosclerosis. 2001;158:173–81.

    Article  CAS  PubMed  Google Scholar 

  165. Sagoo GS, Tatt I, Salanti G, et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol. 2008;168:1233–46.

    Article  PubMed  Google Scholar 

  166. Sandhofer A, Tatarczyk T, Laimer M, et al. The Taq1B-variant in the cholesteryl ester-transfer protein gene and the risk of metabolic syndrome. Obesity. 2008;16:919–22.

    Article  CAS  PubMed  Google Scholar 

  167. Senti M, Elosua R, Tomas M, et al. Physical activity modulates the combined effect of a common variant of the lipoprotein lipase gene and smoking on serum triglyceride levels and high-density lipoprotein cholesterol in men. Hum Genet. 2001;109:385–92.

    Article  CAS  PubMed  Google Scholar 

  168. Shah S, Casas JP, Gaunt TR, et al. Influence of common genetic variation on blood lipid levels, cardiovascular risk, and coronary events in two British prospective cohort studies. Eur Heart J. 2013;34:972–81.

    Article  CAS  PubMed  Google Scholar 

  169. Shakhtshneider EV, Kulikov IV, Maksimov VN, et al. CETP gene polymorphism in the caucasian population of West Siberia and in groups contrast by total serum cholesterol levels. Bull Exp Biol Med. 2014;157:364–7.

    Article  CAS  PubMed  Google Scholar 

  170. Shan L, Yu XC, Liu Z, et al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem. 2009;284:1419–24.

    Article  CAS  PubMed  Google Scholar 

  171. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shen Y, Xi B, Zhao X, et al. Common genetic variants associated with lipid profiles in a Chinese pediatric population. Hum Genet. 2013;132:1275–85.

    Article  CAS  PubMed  Google Scholar 

  173. Shimizugawa T, Ono M, Shimamura M, et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem. 2002;277:33742–8.

    Article  CAS  PubMed  Google Scholar 

  174. Shioji K, Mannami T, Kokubo Y, et al. An association analysis between ApoA1 polymorphisms and the high-density lipoprotein (HDL) cholesterol level and myocardial infarction (MI) in Japanese. J Hum Genet. 2004a;49:433–9.

    Article  CAS  PubMed  Google Scholar 

  175. Shioji K, Nishioka J, Naraba H, et al. A promoter variant of the ATP-binding cassette transporter A1 gene alters the HDL cholesterol level in the general Japanese population. J Hum Genet. 2004b;49:141–7.

    Article  CAS  PubMed  Google Scholar 

  176. Smalinskiene A, Petkeviciene J, Luksiene D, et al. Association between APOE, SCARB1, PPARalpha polymorphisms and serum lipids in a population of Lithuanian adults. Lipids Health Dis. 2013;12:120.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep. 2011;13:149–57.

    Article  CAS  PubMed  Google Scholar 

  178. Srinivasan SR, Ehnholm C, Elkasabany A, et al. Influence of apolipoprotein E polymorphism on serum lipids and lipoprotein changes from childhood to adulthood: the Bogalusa Heart Study. Atherosclerosis. 1999;143:435–43.

    Article  CAS  PubMed  Google Scholar 

  179. Srinivasan SR, Li S, Chen W, et al. Q192R polymorphism of the paraoxanase 1 gene and its association with serum lipoprotein variables and carotid artery intima-media thickness in young adults from a biracial community. The Bogalusa Heart Study. Atherosclerosis. 2004;177:167–74.

    CAS  PubMed  Google Scholar 

  180. Tai ES, Corella D, Deurenberg-Yap M, et al. Dietary fat interacts with the -514C > T polymorphism in the hepatic lipase gene promoter on plasma lipid profiles in a multiethnic Asian population: the 1998 Singapore National Health Survey. J Nutr. 2003a;133:3399–408.

    Article  CAS  PubMed  Google Scholar 

  181. Tai ES, Ordovas JM, Corella D, et al. The TaqIB and -629C > A polymorphisms at the cholesteryl ester transfer protein locus: associations with lipid levels in a multiethnic population. The 1998 Singapore National Health Survey. Clin Genet. 2003b;63:19–30.

    Google Scholar 

  182. Talmud PJ, Hawe E, Martin S, et al. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet. 2002a;11:3039–46.

    Article  CAS  PubMed  Google Scholar 

  183. Talmud PJ, Hawe E, Robertson K, et al. Genetic and environmental determinants of plasma high density lipoprotein cholesterol and apolipoprotein AI concentrations in healthy middle-aged men. Ann Hum Genet. 2002b;66:111–24.

    Article  CAS  PubMed  Google Scholar 

  184. Tang NP, Wang LS, Yang L, et al. Protective effect of an endothelial lipase gene variant on coronary artery disease in a Chinese population. J Lipid Res. 2008;49:369–75.

    Article  CAS  PubMed  Google Scholar 

  185. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Thompson A, Di AE, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299:2777–88.

    Article  CAS  PubMed  Google Scholar 

  187. Tikkanen E, Tuovinen T, Widen E, et al. Association of known loci with lipid levels among children and prediction of dyslipidemia in adults. Circ Cardiovasc Genet. 2011;4:673–80.

    Article  CAS  PubMed  Google Scholar 

  188. Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371:221–6.

    Article  CAS  PubMed  Google Scholar 

  189. Tsujita Y, Nakamura Y, Zhang Q, et al. The association between high-density lipoprotein cholesterol level and cholesteryl ester transfer protein TaqIB gene polymorphism is influenced by alcohol drinking in a population-based sample. Atherosclerosis. 2007;191:199–205.

    Article  CAS  PubMed  Google Scholar 

  190. van Aalst-Cohen ES, Jansen AC, Boekholdt SM, et al. Genetic determinants of plasma HDL-cholesterol levels in familial hypercholesterolemia. Eur J Hum Genet. 2005;13:1137–42.

    Article  PubMed  Google Scholar 

  191. van de Woestijne AP, van der Graaf Y, de Bakker PI, et al. Rs964184 (APOA5-A4-C3-A1) is related to elevated plasma triglyceride levels, but not to an increased risk for vascular events in patients with clinically manifest vascular disease. PLoS One. 2014;9:e101082.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Volcik KA, Barkley RA, Hutchinson RG, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. Am J Epidemiol. 2006;164:342–8.

    Article  PubMed  Google Scholar 

  193. Wang X, Paigen B. Genetics of variation in HDL cholesterol in humans and mice. Circ Res. 2005;96:27–42.

    Article  CAS  PubMed  Google Scholar 

  194. Wang J, Ban MR, Zou GY, et al. Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet. 2008;17:2894–9.

    Article  CAS  PubMed  Google Scholar 

  195. Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010;30:2264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Whiting BM, Anderson JL, Muhlestein JB, et al. Candidate gene susceptibility variants predict intermediate end points but not angiographic coronary artery disease. Am Heart J. 2005;150:243–50.

    Article  CAS  PubMed  Google Scholar 

  197. Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. NatGenet. 2013;45:1274–83.

    CAS  Google Scholar 

  199. Wilson PW, Myers RH, Larson MG, et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. JAMA. 1994;272:1666–71.

    Article  CAS  PubMed  Google Scholar 

  200. Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation. 1999;99:2901–7.

    Article  CAS  PubMed  Google Scholar 

  201. Wu K, Bowman R, Welch AA, et al. Apolipoprotein E polymorphisms, dietary fat and fibre, and serum lipids: the EPIC Norfolk study. Eur Heart J. 2007;28:2930–6.

    Article  CAS  PubMed  Google Scholar 

  202. Wu S, Mar-Heyming R, Dugum EZ, et al. Upstream transcription factor 1 influences plasma lipid and metabolic traits in mice. Hum Mol Genet. 2010;19:597–608.

    Article  CAS  PubMed  Google Scholar 

  203. Yabe D, Brown MS, Goldstein JL. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci U S A. 2002;99:12753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yamada Y, Matsuo H, Warita S, et al. Prediction of genetic risk for dyslipidemia. Genomics. 2007;90:551–8.

    Article  CAS  PubMed  Google Scholar 

  205. Yamada Y, Ichihara S, Kato K, et al. Genetic risk for metabolic syndrome: examination of candidate gene polymorphisms related to lipid metabolism in Japanese people. J Med Genet. 2008;45:22–8.

    Article  CAS  PubMed  Google Scholar 

  206. Yamakawa-Kobayashi K, Yanagi H, Endo K, et al. Relationship between serum HDL-C levels and common genetic variants of the endothelial lipase gene in Japanese school-aged children. Hum Genet. 2003;113:311–5.

    Article  CAS  PubMed  Google Scholar 

  207. Zhang K, Zhang S, Zheng K, et al. Study on the association of lecithin cholesterol acyltransferase gene polymorphisms with the lipid metabolism in coronary atherosclerotic heart disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003;20:135–7.

    CAS  PubMed  Google Scholar 

  208. Zhang K, Zhang S, Zheng K, et al. Novel P143L polymorphism of the LCAT gene is associated with dyslipidemia in Chinese patients who have coronary atherosclerotic heart disease. Biochem Biophys Res Commun. 2004;318:4–10.

    Article  CAS  PubMed  Google Scholar 

  209. Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest. 1996;97:2917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhu XY, Xu HW, Hou RY, et al. Lecithin-cholesterol acyltransferase gene 608C/T polymorphism associated with atherosclerotic cerebral infarction. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2006;23:419–22.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora L. Nock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nock, N.L. (2023). Genetics of Lipid Disorders. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-031-40116-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40116-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40115-2

  • Online ISBN: 978-3-031-40116-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics