Skip to main content

The Role of Endothelial Dysfunction in the Connection Between Gut Microbiota, Vascular Injury, and Arterial Hypertension

  • Reference work entry
  • First Online:
Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk

Part of the book series: Endocrinology ((ENDOCR))

  • 215 Accesses

Abstract

The management of arterial hypertension, as recently defined by the European Society of Hypertension, is far from being completely achieved, and further studies are required both in the area of pathophysiology of elevated blood pressure and in developing novel and more effective therapeutic strategies. Recent studies highlighted the primary role of vascular endothelial cells (ECs) played in regulating vascular tone (mostly via nitric oxide release) and counteracting atherothrombosis. On the other hand, endothelial dysfunction, which occurs early in disease states characterized by metabolic disorders (diabetes mellitus, Metabolic Syndrome, dyslipidemias, etc.), represents the key mechanism underlying the loss of the capacity to modulate blood pressure and inhibit smooth cell proliferation as a consequence of a chronic inflammatory condition and oxidative stress. Mounting evidence suggests that there is a substantial contribution to this process accompanying altered microbiota. This occurs via an enhanced endotoxin migration from the epithelial intestinal barrier (LPS in particular), which leads to low-grade endotoxemia. This, in turn, is associated with increased cytokine release, dysregulation of NO synthases, and COX-2 activation, leading to impaired vascular control and elevation of blood pressure. Moreover, the reduced production of antihypertensive metabolites (Short Chain Fatty Acids; SCFA) and the increased production of toxic substances (TMAO), as a consequence of dysbiosis, further potentiate the role of altered microbiota in the development of cardiovascular impairment and arterial hypertension. This chapter aims to assess the pathophysiological mechanisms underlying dysbiosis as a central mechanism associated with vascular impairment and high blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AF, Dwivedi G, O’Gara F, Caparros-Martin J, Ward NC. The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol. 2019;317:H923–38.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids. 2003;25(3–4):295–311.

    Article  CAS  PubMed  Google Scholar 

  • Amedei A, Morbidelli L. Circulating metabolites originating from gut microbiota control endothelial cell function. Molecules. 2019;24:3992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada M, Oishi E, Sakata S, Hata J, Yoshida D, Honda T, Furuta Y, Shibata M, Suzuki K, Watanabe H, et al. Serum lipopolysaccharide-binding protein levels and the incidence of cardiovascular disease in a general Japanese population: the Hisayama study. J Am Heart Assoc. 2019;8(21):e013628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, et al. The gut microbiome in hypertension: recent advances and future perspectives. Circ Res. 2021;128:934–50.

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    Article  CAS  PubMed  Google Scholar 

  • Carnevale R, Pastori D, Nocella C, Cammisotto V, Baratta F, Del Ben M, Angelico F, Sciarretta S, Bartimoccia S, Novo M, et al. Low-grade endotoxemia, gut permeability and platelet activation in patients with impaired fasting glucose. Nutr Metab Cardiovasc Dis. 2017;27(10):890–5.

    Article  CAS  PubMed  Google Scholar 

  • Carnevale R, Sciarretta S, Valenti V, di Nonno F, Calvieri C, Nocella C, Frati G, Forte M, d’Amati G, Pignataro MG, et al. Low-grade endotoxaemia enhances artery thrombus growth via toll-like receptor 4: implication for myocardial infarction. Eur Heart J. 2020;41(33):3156–65.

    Article  CAS  PubMed  Google Scholar 

  • Carresi C, Gliozzi M, Musolino V, Scicchitano M, Scarano F, Bosco F, Nucera S, Maiuolo J, Macrì R, Ruga S, et al. The effect of natural antioxidants in the development of metabolic syndrome: focus on bergamot polyphenolic fraction. Nutrients. 2020;12:1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, et al. Oxidative stress triggers defective autophagy in endothelial cells: role in atherothrombosis development. Antioxidants (Basel). 2021;10(3):387.

    Article  CAS  PubMed  Google Scholar 

  • Carresi C, Cardamone A, Coppoletta AR, Mollace A, Musolino V, Gliozzi M, Mollace V. Imbalance of thalamic metabolites in an experimental model of hypertension: role of bergamot polyphenols. Front Integr Neurosci. 2023;17:1271005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary P, Pandey A, Azad CS, Tia N, Singh M, Gambhir IS. Association of oxidative stress and endothelial dysfunction in hypertension. Anal Biochem. 2019;590:113535.

    Article  PubMed  Google Scholar 

  • Chen H, Li J, Li N, Liu H, Tang J. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy. 2019;38:96–104.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Guo C, Huang S, Jia Z, Wang J, Zhong J, Ge H, Yuan J, Chen T, Liu X, et al. MitoQ attenuates brain damage by polarizing microglia towards the M2 phenotype through inhibition of the NLRP3 inflammasome after ICH. Pharmacol Res. 2020;161:105122.

    Article  CAS  PubMed  Google Scholar 

  • Chu A, Chambers ED, Lin CC, Kuehl WD, Palmer RM, Moncada S, Cobb FR. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. J Clin Investig. 1991;87:1964–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuzzocrea S, Mazzon E, Dugo L, Di Paola R, Caputi AP, Salvemini D. Superoxide: a key player in hypertension. FASEB J. 2004;18(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  • Dias P, Pourová J, Vopršalová M, Nejmanová I, Mladenka P. 3-Hydroxyphenylacetic acid: a blood pressure-reducing flavonoid metabolite. Nutrients. 2022;14:328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Subramanian S, Montes VN, Goodspeed L, Wang S, Han C, Teresa AS 3rd, Kim J, O’Brien KD, Chait A. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(7):1596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol. 2012;10:1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020;75(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Lanza O, Savoia C. New insight in cardiorenal syndrome: from biomarkers to therapy. Int J Mol Sci. 2023;24(6):5089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. J Endocr Soc. 2020;4:bvz039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto K, Ohtsubo T, Kitazono T. Endothelium-dependent hyperpolarization (EDH) in hypertension: the role of endothelial ion channels. Int J Mol Sci. 2018;19:315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunfeld S, Hamilton CA, Mesaros S, McClain SW, Dominiczak AF, Bohr DF, Malinski T. Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension. 1995;26(6 Pt 1):854–7.

    Article  CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986;320(6061):454–6.

    Article  CAS  PubMed  Google Scholar 

  • Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol. 2016;311(1):G1–G15.

    Article  PubMed  Google Scholar 

  • Guo J, Guo X, Sun Y, Li Z, Jia P. Application of omics in hypertension and resistant hypertension. Hypertens Res. 2022;45:775–88.

    Article  PubMed  Google Scholar 

  • Jäckel S, Kiouptsi K, Lillich M, Hendrikx T, Khandagale A, Kollar B, Hörmann N, Reiss C, Subramaniam S, Wilms E, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via toll-like receptor-2. Blood. 2017;130(4):542–53.

    Article  PubMed  Google Scholar 

  • Janda E, Visalli V, Colica C, Aprigliano S, Musolino V, Vadalà N, Muscoli C, Sacco I, Iannone M, Rotiroti D, Spedding M, Mollace V. The protective effect of tianeptine on Gp120-induced apoptosis in astroglial cells: role of GS and NOS, and NF-κB suppression. Br J Pharmacol. 2011;164(6):1590–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19:42.

    Article  PubMed  Google Scholar 

  • Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu WK, Orekhov AN. A novel insight at atherogenesis: the role of microbiome. Front Cell Dev Biol. 2020;8:586189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau K, Srivatsav V, Rizwan A, Nashed A, Liu R, Shen R, Akhtar M. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients. 2017;9:859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehr HA, Sagban TA, Ihling C, Zähringer U, Hungerer KD, Blumrich M, Reifenberg K, Bhakdi S. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation. 2001;104(8):914–20.

    Article  CAS  PubMed  Google Scholar 

  • Levels JH, Marquart JA, Abraham PR, van den Ende AE, Molhuizen HO, van Deventer SJ, Meijers JC. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect Immun. 2005;73(4):2321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Mehta JL. Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circ Res. 2009;104(5):566–8.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:1–19.

    Article  Google Scholar 

  • Li Q, Heaney A, Langenfeld-McCoy N, Boler BV, Laflamme DP. Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease: a blinded randomized controlled study in 36 dogs. BMC Vet Res. 2019;15:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Laflamme DP, Bauer JE. Serum untargeted metabolomic changes in response to diet intervention in dogs with preclinical myxomatous mitral valve disease. PLoS One. 2020;15:e0234404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuolo J, Gliozzi M, Musolino V, Scicchitano M, Carresi C, Scarano F, Bosco F, Nucera S, Ruga S, Zito MC, et al. The “frail” brain blood barrier in neurodegenerative diseases: role of early disruption of endothelial cell-to-cell connections. Int J Mol Sci. 2018;19(9):2693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Macrì R, Scicchitano M, Bosco F, Scarano F, Ruga S, et al. The role of endothelial dysfunction in peripheral blood nerve barrier: molecular mechanisms and pathophysiological implications. Int J Mol Sci. 2019;20(12):3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, Macrì R, Nucera S, Bosco F, Oppedisano F, et al. The contribution of gut microbiota and endothelial dysfunction in the development of arterial hypertension in animal models and in humans. Int J Mol Sci. 2022;23(7):3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 2007;26(10):2527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;20:964–77.

    Article  Google Scholar 

  • Marzullo P, Di Renzo L, Pugliese G, De Siena M, Barrea L, Muscogiuri G, Colao A, Savastano S, Obesity Programs of Nutrition, Education, Research and Assessment (OPERA) Group. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. Int J Obes Suppl. 2020;10(1):35–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto T, Kojima M, Takayanagi K, Taguchi K, Kobayashi T. Trimethylamine-N-oxide specifically impairs endothelium-derived hyperpolarizing factor-type relaxation in rat femoral artery. Biol Pharm Bull. 2020;43:569–73.

    Article  CAS  PubMed  Google Scholar 

  • Matthews RP, McKnight GS. Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter. J Biol Chem. 1996;271(50):31869–77.

    Article  CAS  PubMed  Google Scholar 

  • Migliori M, Cantaluppi V, Mannari C, Bertelli AA, Medica D, Quercia AD, Navarro V, Scatena A, Giovannini L, Biancone L, et al. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS One. 2015;10:e0117530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mollace V, Gliozzi, M. Autophagy in balloon injury models of smooth muscle cell proliferation. Adv Food Saf Health. 2015.

    Google Scholar 

  • Mollace V, Salvemini D, Anggard E, Vane J. Nitric oxide from vascular smooth muscle cells: regulation of platelet reactivity and smooth muscle cell guanylate cyclase. Br J Pharmacol. 1991;104(3):633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217–52.

    Article  CAS  PubMed  Google Scholar 

  • Mollace R, Macrì R, Nicita M, Musolino V, Gliozzi M, Carresi C, Bava I, Maiuolo J, Tavernese A, Cardamone A, et al. Bergamot polyphenolic extract combined with albedo and pulp fibres counteracts changes in gut microbiota associated with high-fat diet: implications for lipoprotein size re-arrangement. Int J Mol Sci. 2023;24(16):12967. https://doi.org/10.3390/ijms241612967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31:631–41.

    Article  PubMed  Google Scholar 

  • Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics. 2016;48:826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology. 2017;153:711–22.

    Article  PubMed  Google Scholar 

  • Oppedisano F, Muscoli C, Musolino V, Carresi C, Macrì R, Giancotta C, Bosco F, Maiuolo J, Scarano F, Paone S, et al. The protective effect of Cynara cardunculus extract in diet-induced NAFLD: involvement of OCTN1 and OCTN2 transporter subfamily. Nutrients. 2020;12:1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021;18:235–50.

    Article  CAS  PubMed  Google Scholar 

  • Page IH. Pathogenesis of arterial hypertension. J Am Med Assoc. 1949;140:451–8.

    Article  CAS  PubMed  Google Scholar 

  • Panza JA, Casino PR, Badar DM, Quyyumi AA. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation. 1993;87:1475–81.

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Liu Y, Zhao Y, Yang X. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice. Food Chem Toxicol. 2016;94:203–12.

    Article  CAS  PubMed  Google Scholar 

  • Rice JB, Stoll LL, Li WG, Denning GM, Weydert J, Charipar E, Richenbacher WE, Miller FJ Jr, Weintraub NL. Low-level endotoxin induces potent inflammatory activation of human blood vessels: inhibition by statins. Arterioscler Thromb Vasc Biol. 2003;23(9):1576–82.

    Article  CAS  PubMed  Google Scholar 

  • Richards EM, Pepine CJ, Raizada MK, Kim S. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19:36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robles-Vera I, de la Visitación N, Toral M, Sánchez M, Gómez-Guzmán M, Jiménez R, Romero M, Duarte J. Mycophenolate mediated remodeling of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rats. Biomed Pharmacother. 2021;135:111189.

    Article  CAS  PubMed  Google Scholar 

  • Rubanyi GM, Vanhoutte PM. 94. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Phys. 1986;250(5 Pt 2):H822–7.

    CAS  Google Scholar 

  • Salvemini D, Mollace V, Pistelli A, Anggard E, Vane J. Metabolism of glyceryl trinitrate to nitric oxide by endothelial cells and smooth muscle cells and its induction by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1992;89(3):982–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares JB, Pimentel-Nunes P, Roncon-Albuquerque R Jr, Leite-Moreira AF. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol Int. 2010;4:659–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theofilis P, Sagris M, Oikonomou E, Antonopoulos A, Siasos G, Tsioufis C, Tousoulis D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicine. 2021;9:781.

    CAS  Google Scholar 

  • Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–466.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuillez C, Richard V. Targeting endothelial dysfunction in hypertensive subjects. J Hum Hypertens. 2005;19(Suppl 1):S21–5.

    Article  CAS  PubMed  Google Scholar 

  • Tschudi M, Mesaros S, Luscher TF, Malinski T. Superoxide-driven peroxynitrite formation that, in direct in situ measurement of nitric oxide in mesenteric arteries-turn, was responsible for the formation of nitrotyrosine. Hypertension. 1996;27:32.

    Article  CAS  PubMed  Google Scholar 

  • Violi F, Cammisotto V, Bartimoccia S, Pignatelli P, Carnevale R, Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023;20(1):24–37.

    Article  PubMed  Google Scholar 

  • Wang S, Sarriá B, Mateos R, Goya L, Bravo-Clemente L. TNF-α-induced oxidative stress and endothelial dysfunction in EA.hy926 cells is prevented by mate and green coffee extracts, 5-caffeoylquinic acid and its microbial metabolite, dihydrocaffeic acid. Int J Food Sci Nutr. 2019;70(3):267–84.

    Article  CAS  PubMed  Google Scholar 

  • Wiedermann CJ, Kiechl S, Dunzendorfer S, Schratzberger P, Egger G, Oberhollenzer F, Willeit J. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999;34(7):1975–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare that no conflict of interest exists in the data included in the manuscript. All authors have read and agreed to the published version of the manuscript.

The work was supported by public resources from the Italian Ministry of Research: PON-MIUR 03PE000_78_1 and PONMIUR 03PE000_78_2. POR Calabria FESR FSE 2014–2020 Asse 12-Azioni 10.5.6 e 10.5.12. and Agrinfra Project granted by Regione Calabria (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Mollace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mollace, R., Maiuolo, J., Mollace, V. (2024). The Role of Endothelial Dysfunction in the Connection Between Gut Microbiota, Vascular Injury, and Arterial Hypertension. In: Federici, M., Menghini, R. (eds) Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35064-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35064-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35063-4

  • Online ISBN: 978-3-031-35064-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics