Skip to main content

Gut Microbial Metabolism in Heart Failure

  • Reference work entry
  • First Online:
Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk

Part of the book series: Endocrinology ((ENDOCR))

  • 217 Accesses

Abstract

Despite significant advances in drug development and therapeutic strategies, heart failure (HF) continues to have a high burden of morbidity and mortality. Current treatment options for advanced HF are limited to cardiac replacement therapies such as heart transplantation and left ventricular assist devices, but even these therapies pose restrictions of related complications and high rehospitalization rates. There remains a strong need for novel insight into the pathophysiology of HF to develop more precise, personalized, and complementary therapeutics. Recent evidence has demonstrated that alterations in the gut microbiome could play a role in HF progression and development. Changes in gut microbiota composition and metabolism, or gut dysbiosis, has been linked to HF’s pathogenic disease outcomes. While understanding of the specific mechanisms behind HF-related gut dysbiosis is limited, research has illustrated the effects of several gut microbial metabolites such as short-chain fatty acids, bile acids, trimethylamine N-oxide, amino acid metabolites, and phenylacetylglutamine and their implications in HF pathogenesis and overall cardiac health. The use of gut microbial metabolites as diagnostic biomarkers and therapeutic targets for HF demonstrates great clinical potential. Further insight into the complex gut microbiome–host interactions opens the door to improved treatment options and more comprehensive and personalized HF care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AF, Ward NC, Dwivedi G. The gut microbiome and heart failure. Curr Opin Cardiol. 2019;34(2):225–32.

    Article  PubMed  Google Scholar 

  • Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int. 2018;2018:9478630.

    Article  PubMed  PubMed Central  Google Scholar 

  • Branchereau M, Burcelin R, Heymes C. The gut microbiome and heart failure: a better gut for a better heart. Rev Endocr Metab Disord. 2019;20(4):407–14.

    Article  PubMed  Google Scholar 

  • Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol. 2017;8:1829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaikijurajai T, Tang WHW. Gut microbiome and precision nutrition in heart failure: hype or hope? Curr Heart Fail Rep. 2021;18(2):23–32.

    Article  CAS  PubMed  Google Scholar 

  • Costanza AC, Moscavitch SD, Faria Neto HCC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–50.

    Article  PubMed  Google Scholar 

  • Cui X, Ye L, Li J, Jin L, Wang W, Li S, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005;46(6):1019–26.

    Article  CAS  PubMed  Google Scholar 

  • Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, Adorini L, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther. 2018;36(5):e12462.

    Article  PubMed  Google Scholar 

  • Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Kong B, Zhu J, Huang H, Shuai W. Phenylacetylglutamine increases the susceptibility of ventricular arrhythmias in heart failure mice by exacerbated activation of the TLR4/AKT/mTOR signaling pathway. Int Immunopharmacol. 2023;116:109795.

    Article  CAS  PubMed  Google Scholar 

  • Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491–9.

    Article  PubMed  Google Scholar 

  • Genton L, Mareschal J, Charretier Y, Lazarevic V, Bindels LB, Schrenzel J. Targeting the gut microbiota to treat cachexia. Front Cell Infect Microbiol. 2019;9:305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harikrishnan S. Diet, the gut microbiome and heart failure. Card Fail Rev. 2019;5(2):119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter WG, Kelly JP, McGarrah RW, Khouri MG, Craig D, Haynes C, et al. Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc. 2016;5(8):e003190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karwi QG, Lopaschuk GD. Branched-chain amino acid metabolism in the failing heart. Cardiovasc Drugs Ther. 2022;37:413–20.

    Article  PubMed  Google Scholar 

  • Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation. 2020;141(17):1393–403.

    Article  CAS  PubMed  Google Scholar 

  • Kitai T, Nemet I, Engelman T, Morales R, Chaikijurajai T, Morales K, et al. Intestinal barrier dysfunction is associated with elevated right atrial pressure in patients with advanced decompensated heart failure. Am Heart J. 2021;245:78–80.

    Article  PubMed  Google Scholar 

  • Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203.

    Article  CAS  PubMed  Google Scholar 

  • Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J Off Publ Fed Am Soc Exp Biol. 2012;26(4):1727–35.

    CAS  Google Scholar 

  • Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2015;40(7):749–52.

    Article  Google Scholar 

  • Lefterova MI, Suarez CJ, Banaei N, Pinsky BA. Next-generation sequencing for infectious disease diagnosis and management. J Mol Diagn. 2015;17(6):623–34.

    Article  CAS  PubMed  Google Scholar 

  • Levitan EB, Wolk A, Mittleman MA. Consistency with the DASH diet and incidence of heart failure. Arch Intern Med. 2009;169(9):851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liyanage T, Ninomiya T, Wang A, Neal B, Jun M, Wong MG, et al. Effects of the Mediterranean diet on cardiovascular outcomes-a systematic review and meta-analysis. PLoS One. 2016;11(8):e0159252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Löfman I, Szummer K, Hagerman I, Dahlström U, Lund LH, Jernberg T. Prevalence and prognostic impact of kidney disease on heart failure patients. Open Heart. 2016;3(1):e000324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47(2):75–85.

    Article  PubMed  Google Scholar 

  • Mamic P, Heidenreich PA, Hedlin H, Tennakoon L, Staudenmayer KL. Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant Clostridium difficile infection rates and in-hospital mortality. J Card Fail. 2016;22(11):891–900.

    Article  PubMed  Google Scholar 

  • Mamic P, Chaikijurajai T, Tang WHW. Gut microbiome – a potential mediator of pathogenesis in heart failure and its comorbidities: state-of-the-art review. J Mol Cell Cardiol. 2021;152:105–17.

    Article  CAS  PubMed  Google Scholar 

  • Marques FZ, Nelson E, Chu P-Y, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77.

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP, et al. Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail. 2017;23(9):666–71.

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer CCK, Awoyemi AO, Moscavitch SD, Lappegård KT, Hov JR, Aukrust P, et al. Design of the GutHeart-targeting gut microbiota to treat heart failure-trial: a phase II, randomized clinical trial. ESC Heart Fail. 2018;5(5):977–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayerhofer CCK, Kummen M, Holm K, Broch K, Awoyemi A, Vestad B, et al. Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail. 2020;7(2):456–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGarrah RW, White PJ. Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol. 2023;20(2):77–89.

    Article  CAS  PubMed  Google Scholar 

  • Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80.

    Article  PubMed  Google Scholar 

  • Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet Lond Engl. 1999;353(9167):1838–42.

    Article  CAS  Google Scholar 

  • Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb. 2017;24(7):660–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.

    Article  CAS  PubMed  Google Scholar 

  • Peng Y-S, Ding H-C, Lin Y-T, Syu J-P, Chen Y, Wang S-M. Uremic toxin p-cresol induces disassembly of gap junctions of cardiomyocytes. Toxicology. 2012;302(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  • Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–7.

    Article  PubMed  Google Scholar 

  • Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110(11):4410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, et al. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 2016;27(11):3479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano KA, Nemet I, Prasad Saha P, Haghikia A, Li XS, Mohan ML, et al. Gut microbiota-generated phenylacetylglutamine and heart failure. Circ Heart Fail. 2022;16:e009972.

    PubMed  PubMed Central  Google Scholar 

  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  • Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.

    Article  CAS  PubMed  Google Scholar 

  • Sandek A, Swidsinski A, Schroedl W, Watson A, Valentova M, Herrmann R, et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014;64(11):1092–102.

    Article  PubMed  Google Scholar 

  • Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiattarella GG, Sannino A, Esposito G, Perrino C. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc Med. 2019;29(3):141–7.

    Article  CAS  PubMed  Google Scholar 

  • Shimazu S, Hirashiki A, Okumura T, Yamada T, Okamoto R, Shinoda N, et al. Association between indoxyl sulfate and cardiac dysfunction and prognosis in patients with dilated cardiomyopathy. Circ J Off J Jpn Circ Soc. 2013;77(2):390–6.

    CAS  Google Scholar 

  • Tang WHW. Dysregulated amino acid metabolism in heart failure: role of gut microbiome. Curr Opin Clin Nutr Metab Care. 2022;26:195–200.

    Article  PubMed  Google Scholar 

  • Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015a;116(3):448–55.

    Article  CAS  PubMed  Google Scholar 

  • Tang WHW, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015b;21(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  • Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019a;73(16):2089–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019b;16(3):137–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Papageorgiou N, Stefanadis C. Ursodeoxycholic acid in patients with chronic heart failure. J Am Coll Cardiol. 2012;60(16):1579–80.

    Article  PubMed  Google Scholar 

  • Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine. 2020;52:102649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308–15.

    Article  PubMed  Google Scholar 

  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-H, Cheng M-L, Liu M-H, Shiao M-S, Hsu K-H, Huang Y-Y, et al. Increased p-cresyl sulfate level is independently associated with poor outcomes in patients with heart failure. Heart Vessel. 2016;31(7):1100–8.

    Article  CAS  Google Scholar 

  • Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. Cardiovascular diseases [Internet]. 2021 [cited 2023 Jan 10]. Available from https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

  • Zhang Z, Cai B, Sun Y, Deng H, Wang H, Qiao Z. Alteration of the gut microbiota and metabolite phenylacetylglutamine in patients with severe chronic heart failure. Front Cardiovasc Med. 2022;9:1076806.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018;9:765.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

Ms. Aiyer has no relationships to disclose. Dr. Tang served as consultant for Sequana Medical, Cardiol Therapeutics, Genomics plc, Zehna Therapeutics, Renovacor, WhiteSwell, Kiniksa, Boston Scientific, and CardiaTec Biosciences and has received honorarium from Springer Nature and American Board of Internal Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aiyer, S., Tang, W.H.W. (2024). Gut Microbial Metabolism in Heart Failure. In: Federici, M., Menghini, R. (eds) Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35064-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35064-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35063-4

  • Online ISBN: 978-3-031-35064-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics