Skip to main content

Chemical Hazards at Work and Occupational Diseases Using Job-Exposure Matrices

  • Reference work entry
  • First Online:
Handbook of Life Course Occupational Health

Abstract

Occupational health is shaped by a complex set of occupational exposures and their determinants occurring throughout the life course. The assessment of occupational exposure to a chemical hazard is a complex process, which ideally results in an estimate of internal dose integrated over the exposure duration throughout the individual’s professional carrier. However, in practice, existing data rarely allow such an assessment. Job-exposure matrices – or JEMs – established for one or several chemical hazards present a valid alternative, enabling assessment of chemical exposure per job, or homogeneous group of workers at company, or industry, or on the population level.

This chapter presents the principles and main constrains in exposure assessment for chemical hazards and summarizes the most common strategies and methods. JEM approach is presented in more details, to emphasize the methodological improvement achieved over the last four decades and chemicals for which the exposure has been assessed using JEMs. An illustrative example of a plant-specific JEM constructed for the nuclear industry emphasizes the JEMs’ usefulness in occupational health research, and particularly in the estimation of the dose-response relationship with health outcomes. Finally, the use of JEMs for emergent exposures is discussed, along with potential extension of JEM approach to improve the exposure assessment to chemicals in the constantly changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audignon-Durand S, Gramond C, Ducamp S, Manangama G, Garrigou A, Delva F, Brochard P, Lacourt A (2021) Development of a job-exposure matrix for ultrafine particle exposure: the MatPUF JEM. Ann Work Expo Health 65:516–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benke G, Sim M, Fritschi L, Aldred G, Forbes A, Kauppinen T (2001) Comparison of occupational exposure using three different methods: hygiene panel, job exposure matrix (JEM), and self reports. Appl Occup Environ Hyg 16:84–91

    Article  CAS  PubMed  Google Scholar 

  • Bergamaschi E, Garzaro G, Wilson Jones G, Buglisi M, Caniglia M, Godono A, Bosio D, Fenoglio I, Guseva Canu I (2021) Occupational exposure to carbon nanotubes and carbon Nanofibres: more than a cobweb. Nanomaterials (Basel) 11:745

    Article  CAS  PubMed  Google Scholar 

  • Borgatta M, Hechon J, Wild P, Hopf NB (2021) Influence of collection and storage materials on glycol ether concentrations in urine and blood. Sci Total Environ 792:148196

    Article  CAS  PubMed  Google Scholar 

  • Brouwer M, Schinasi L, Beane Freeman LE, Baldi I, Lebailly P, Ferro G, Nordby KC, Schüz J, Leon ME, Kromhout H (2016) Assessment of occupational exposure to pesticides in a pooled analysis of agricultural cohorts within the AGRICOH consortium. Occup Environ Med 73:359–367

    Article  PubMed  Google Scholar 

  • Carles C, Bouvier G, Lebailly P, Baldi I (2017) Use of job-exposure matrices to estimate occupational exposure to pesticides: a review. J Expo Sci Environ Epidemiol 27:125–140

    Article  CAS  PubMed  Google Scholar 

  • Carles C, Bouvier G, Esquirol Y, Pouchieu C, Migault L, Piel C, Fabbro-Peray P, Tual S, Lebailly P, Baldi I (2018) Occupational exposure to pesticides: development of a job-exposure matrix for use in population-based studies (PESTIPOP). J Expo Sci Environ Epidemiol 28:281–288

    Article  CAS  PubMed  Google Scholar 

  • Coggon D, Pannett B, Acheson ED (1984) Use of job-exposure matrix in an occupational analysis of lung and bladder cancers on the basis of death certificates. J Natl Cancer Inst 72:61–65

    Article  CAS  PubMed  Google Scholar 

  • Dahm MM, Bertke S, Schubauer-Berigan MK (2019) Predicting occupational exposures to carbon nanotubes and nanofibers based on workplace determinants modeling. Ann Work Expo Health 63:158–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vocht F, Riddell A, Wakeford R, Liu H, MacGregor D, Wilson C, Peace M, O'Hagan J, Agius R (2019) Construction, validation and sensitivity analyses of a job exposure matrix for early plutonium Workers at the Sellafield Nuclear Site, United Kingdom. Radiat Res 191:60–66

    Article  PubMed  Google Scholar 

  • ECHA (2017) Guidance for the identification and naming of the substances under REACH and CLP. European Chemicals Agency, Helsinki, Finland

    Google Scholar 

  • Févotte J, Dananché B, Delabre L, Ducamp S, Garras L, Houot M, Luce D, Orlowski E, Pilorget C, Lacourt A, Brochard P, Goldberg M, Imbernon E (2011) Matgéné: a program to develop job-exposure matrices in the general population in France. Ann Occup Hyg 55:865–878

    PubMed  Google Scholar 

  • Figgs LW (2013) Lung cancer mortality among uranium gaseous diffusion plant workers: a cohort study 1952-2004. Int J Occup Environ Med 4:128–140

    CAS  PubMed  Google Scholar 

  • Flage R, Aven T (2015) Emerging risk – conceptual definition and a relation to black swan type of events. Reliab Eng Syst Saf 144:61–67

    Article  Google Scholar 

  • Fonseca AS, Jørgensen AK, Larsen BX, Moser-Johansen M, Flachs EM, Ebbehøj NE, Bønløkke JH, Østergaard TO, Bælum J, Sherson DL, Schlünssen V, Meyer HW, Jensen KA (2022) Historical Asbestos measurements in Denmark-A National Database. Int J Environ Res Public Health 19

    Google Scholar 

  • Forest V, Pourchez J, Pélissier C, Audignon Durand S, Vergnon JM, Fontana L (2021) Relationship between occupational exposure to airborne nanoparticles, Nanoparticle Lung Burden and Lung Diseases. Toxics 9(9):204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel S, Koppisch D, Range D (2010) The MGU – a monitoring system for the collection and documentation of valid workplace exposure data. Gefahrst Reinhalt L 70:43–79

    Google Scholar 

  • Gao X, Zhou X, Zou H, Wang Q, Zhou Z, Chen R, Yuan W, Luan Y, Quan C, Zhang M (2021) Exposure characterization and risk assessment of ultrafine particles from the blast furnace process in a steelmaking plant. J Occup Health 63:e12257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg M, Kromhout H, Guenel P, Fletcher AC, Gerin M, Glass DC, Heederik D, Kauppinen T, Ponti A (1993) Job exposure matrices in industry. Int J Epidemiol 22:S10–S15

    Article  PubMed  Google Scholar 

  • Guseva Canu I, Molina G, Goldberg M, Collomb P, David JC, Perez P, Paquet F, Tirmarche M (2008) Development of a job exposure matrix for the epidemiological follow-up of workers in the French nuclear industry. Rev Epidemiol Sante Publique 56:21–29

    Article  CAS  PubMed  Google Scholar 

  • Guseva Canu I, Paquet F, Goldberg M, Auriol B, Bérard P, Collomb P, David JC, Molina G, Perez P, Tirmarche M (2009) Comparative assessing for radiological, chemical, and physical exposures at the French uranium conversion plant: is uranium the only stressor? Int J Hyg Environ Health 212:398–413

    Article  PubMed  Google Scholar 

  • Guseva Canu I, Laurier D, Caër-Lorho S, Samson E, Timarche M, Auriol B, Bérard P, Collomb P, Quesne B, Blanchardon E (2010) Characterisation of protracted low-level exposure to uranium in the workplace: A comparison of two approaches. Int J Hyg Environ Health 213:270–277

    Article  CAS  PubMed  Google Scholar 

  • Guseva Canu I, Jacob S, Cardis E, Wild P, Caër S, Auriol B, Garsi JP, Tirmarche M, Laurier D (2011) Uranium carcinogenicity in humans might depend on the physical and chemical nature of uranium and its isotopic composition: results from pilot epidemiological study of French nuclear workers. Cancer Causes Control 22:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Guseva Canu I, Garsi JP, Caër-Lorho S, Jacob S, Collomb P, Acker A, Laurier D (2012) Does uranium induce circulatory diseases? First results from a French cohort of uranium workers. Occup Environ Med 69:404–409

    Article  PubMed  Google Scholar 

  • Guseva Canu I, Faust S, Knieczak E, Carles M, Samson E, Laurier D (2013) Estimating historic exposures at the European gaseous diffusion plants. Int J Hyg Environ Health 216:499–507

    Article  CAS  PubMed  Google Scholar 

  • Guseva Canu I, Zhivin S, Garsi JP, Caër-Lorho S, Samson E, Collomb P, Acker A, Laurier D (2014) Effects of chronic uranium internal exposure on mortality: results of a pilot study among French nuclear workers. Rev Epidemiol Sante Publique 62:339–350

    Google Scholar 

  • Guseva Canu I, Jezewski-Serra D, Delabre L, Ducamp S, Iwatsubo Y, Audignon-Durand S, Ducros C, Radauceanu A, Durand C, Witschger O, Flahaut E (2017) Qualitative and Semiquantitative assessment of exposure to engineered nanomaterials within the French EpiNano program: inter- and Intramethod reliability study. Ann Work Expo Health 61:87–97

    PubMed  Google Scholar 

  • Guseva Canu I, Schulte PA, Riediker M, Fatkhutdinova L, Bergamaschi E (2018) Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J Epidemiol Community Health 72:148–153

    Article  PubMed  Google Scholar 

  • Guseva Canu I, Fraize-Frontier S, Michel C, Charles S (2020a) Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. J Expo Sci Environ Epidemiol 30:430–435

    Article  CAS  PubMed  Google Scholar 

  • Guseva Canu I, Batsungnoen K, Maynard A, Hopf NB (2020b) State of knowledge on the occupational exposure to carbon nanotubes. Int J Hyg Environ Health 225:113472

    Article  CAS  PubMed  Google Scholar 

  • Hahn KM (2005) Estimating historic exposure to arsenic, berillium, hexavalent chromium, nickel, and uranium at a uranium enrichment, gaseous diffusion plant. University of Cincinnati, Cincinnati, OH

    Google Scholar 

  • Hernández-Mesa M, Le Bizec B, Dervilly G (2021) Metabolomics in chemical risk analysis – a review. Anal Chim Acta 1154:338298

    Article  PubMed  Google Scholar 

  • Hoar SK, Morrison AS, Cole P, Silverman DT (1980) An occupation and exposure linkage system for the study of occupational carcinogenesis. J Occup Med 22:722–726

    CAS  PubMed  Google Scholar 

  • Hopf NB, Bolognesi C, Danuser B, Wild P (2019) Biological monitoring of workers exposed to carcinogens using the buccal micronucleus approach: A systematic review and meta-analysis. Mutat Res Rev Mutat Res 781:11–29

    Article  CAS  PubMed  Google Scholar 

  • Houot MT, Homère J, Goulard H, Garras L, Delabre L, Pilorget C (2021) Lifetime occupational exposure proportion estimation methods: a sensitivity analysis in the general population. Int Arch Occup Environ Health 94:1537–1547

    Article  CAS  PubMed  Google Scholar 

  • Jones K (2020) Occupational biological monitoring-is now the time? Ind Health 58:489–491

    Article  PubMed  Google Scholar 

  • Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppinen T, Partanen T (1988) Use of plant- and period-specific job-exposure matrices in studies on occupational cancer. Scand J Work Environ Health 14:161–167

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen T, Toikkanen J, Pedersen D, Young R, Ahrens W, Boffetta P, Hansen J, Kromhout H, Maqueda Blasco J, Mirabelli D, de la Orden-Rivera V, Pannett B, Plato N, Savela A, Vincent R, Kogevinas M (2000) Occupational exposure to carcinogens in the European Union. Occup Environ Med 57:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppinen T, Heikkilä P, Plato N, Woldbæk T, Lenvik K, Hansen J, Kristjansson V, Pukkala E (2009) Construction of job-exposure matrices for the Nordic occupational cancer study (NOCCA). Acta Oncol 48:791–800

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen T, Uuksulainen S, Saalo A, Mäkinen I, Pukkala E (2014) Use of the Finnish information system on occupational exposure (FINJEM) in epidemiologic, surveillance, and other applications. Ann Occup Hyg 58:380–396

    PubMed  Google Scholar 

  • Leon ME, Schinasi LH, Lebailly P, Beane Freeman LE, Nordby KC, Ferro G, Monnereau A, Brouwer M, Tual S, Baldi I, Kjaerheim K, Hofmann JN, Kristensen P, Koutros S, Straif K, Kromhout H, Schüz J (2019) Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol 48:1519–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesmes-Fabian C (2015) Dermal exposure assessment to pesticides in farming systems in developing countries: comparison of models. Int J Environ Res Public Health 12:4670–4696

    Article  PubMed  PubMed Central  Google Scholar 

  • Letellier N, Gutierrez LA, Pilorget C, Artaud F, Descatha A, Ozguler A, Goldberg M, Zins M, Elbaz A, Berr C (2022) Association between occupational exposure to formaldehyde and cognitive impairment. Neurology 98:e633–ee40

    Article  CAS  PubMed  Google Scholar 

  • Lioy P, Weisel C (2014) Chapter 1 – history and foundations of exposure science. In: Lioy P, Weisel C (eds) Exposure Science. Oxford, Academic Press

    Google Scholar 

  • Liu H, Wakeford R, Riddell A, O'Hagan J, MacGregor D, Agius R, Wilson C, Peace M, de Vocht F (2016) A review of job-exposure matrix methodology for application to workers exposed to radiation from internally deposited plutonium or other radioactive materials. J Radiol Prot 36:R1–R22

    Google Scholar 

  • Manangama G, Audignon-Durand S, Migault L, Gramond C, Zaros C, Teysseire R, Sentilhes L, Brochard P, Lacourt A, Delva F (2020a) Maternal occupational exposure to carbonaceous nanoscale particles and small for gestational age and the evolution of head circumference in the French longitudinal study of children – Elfe study. Environ Res 185:109394

    Article  CAS  PubMed  Google Scholar 

  • Manangama G, Gramond C, Audignon-Durand S, Baldi I, Fabro-Peray P, Ilg AGS, Guénel P, Lebailly P, Luce D, Stücker I, Brochard P, Lacourt A (2020b) Occupational exposure to unintentionally emitted nanoscale particles and risk of cancer: from lung to central nervous system – results from three French case-control studies. Environ Res 191:110024

    Article  CAS  PubMed  Google Scholar 

  • Marant Micallef C, Charvat H, Houot MT, Vignat J, Straif K, Paul A, El Yamani M, Pilorget C, Soerjomataram I (2021) Estimated number of cancers attributable to occupational exposures in France in 2017: an update using a new method for improved estimates. J Expo Sci Environ Epidemiol 33:125

    Article  PubMed  Google Scholar 

  • Niemeier RT, Williams PRD, Rossner A, Clougherty JE, Rice GE (2020) A cumulative risk perspective for occupational health and safety (OHS) professionals. Int J Environ Res Public Health 17:6342

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R (2006) New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int 32:996–1009

    Article  CAS  PubMed  Google Scholar 

  • Pannett B, Coggon D, Acheson ED (1985) A job-exposure matrix for use in population based studies in England and Wales. Br J Ind Med 42:777–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquiou A, Pelluard F, Manangama G, Brochard P, Audignon S, Sentilhes L, Delva F (2021) Occupational exposure to ultrafine particles and placental histopathological lesions: A retrospective study about 130 cases. Int J Environ Res Public Health 18:12719

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters S, Vermeulen R, Olsson A, Van Gelder R, Kendzia B, Vincent R, Savary B, Williams N, Woldbæk T, Lavoué J, Cavallo D, Cattaneo A, Mirabelli D, Plato N, Dahmann D, Fevotte J, Pesch B, Brüning T, Straif K, Kromhout H (2012) Development of an exposure measurement database on five lung carcinogens (ExpoSYN) for quantitative retrospective occupational exposure assessment. Ann Occup Hyg 56:70–79

    CAS  PubMed  Google Scholar 

  • Peters S, Vermeulen R, Portengen L, Olsson A, Kendzia B, Vincent R, Savary B, Lavoué J, Cavallo D, Cattaneo A, Mirabelli D, Plato N, Fevotte J, Pesch B, Brüning T, Straif K, Kromhout H (2016) SYN-JEM: A quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg 60:795–811

    Article  CAS  PubMed  Google Scholar 

  • Peters S, Vienneau D, Sampri A, Turner MC, Castaño-Vinyals G, Bugge M, Vermeulen R (2021) Occupational exposure assessment tools in Europe: A comprehensive inventory overview, vol 66. Ann Work Expo Health, p 671

    Google Scholar 

  • Plys E, Bovio N, Arveux P, Bergeron Y, Bulliard JL, Elia N, Fournier E, Konzelmann I, Maspoli M, Rapiti Aylward E, Guseva Canu I (2022) Research on occupational diseases in the absence of occupational data: a mixed-method study among cancer registries of Western Switzerland. Swiss Med Wkly 152:w30127

    Article  PubMed  Google Scholar 

  • Reed JV, Harcourt AK (1941) The essentials of occupational diseases. Springfield, Thomas, C.C

    Google Scholar 

  • Remy VFM (2022) Bus technology development over the last sixty years in Switzerland and their impact on driver’s health. Ecole Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland

    Google Scholar 

  • Ribalta C, López-Lilao A, Estupiñá S, Fonseca AS, Tobías A, García-Cobos A, Minguillón MC, Monfort E, Viana M (2019) Health risk assessment from exposure to particles during packing in working environments. Sci Total Environ 671:474–487

    Article  CAS  PubMed  Google Scholar 

  • Riddell A, Wakeford R, Liu H, O'Hagan J, MacGregor D, Agius R, Wilson C, Peace M, de Vocht F (2019) Building a job-exposure matrix for early plutonium workers at the Sellafield nuclear site, United Kingdom. J Radiol Prot 39:620–634

    Article  PubMed  Google Scholar 

  • Sauvé JF, Siemiatycki J, Labrèche F, Richardson L, Pintos J, Sylvestre MP, Gérin M, Bégin D, Lacourt A, Kirkham TL, Rémen T, Pasquet R, Goldberg MS, Rousseau MC, Parent MÉ, Lavoué J (2018) Development of and selected performance characteristics of CANJEM, a general population job-exposure matrix based on past expert assessments of exposure. Ann Work Expo Health 62:783–795

    PubMed  PubMed Central  Google Scholar 

  • Savic N, Gasic B, Vernez D (2017) ART, Stoffenmanager, and TRA: A systematic comparison of exposure estimates using the TREXMO translation System. Ann Work Expo Health 62:72–87

    Article  PubMed  Google Scholar 

  • Savic N, Lee EG, Gasic B, Vernez D (2020) TREXMO plus: an advanced self-learning model for occupational exposure assessment. J Expo Sci Environ Epidemiol 30:554–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemiatycki J, Day NE, Fabry J, Cooper JA (1981) Discovering carcinogens in the occupational environment: a novel epidemiologic approach. J Natl Cancer Inst 66:217–225

    CAS  PubMed  Google Scholar 

  • van de Ven P, Fransman W, Schinkel J, Rubingh C, Warren N, Tielemans E (2010) Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology. J Occup Environ Hyg 7:216–223

    Article  PubMed  Google Scholar 

  • Viegas S, Jeddi MZ, Hopf NB, Bessems J, Palmen N, Galea KS, Jones K, Kujath P, Duca R-C, Verhagen H, Santonen T, Pasanen-Kase R (2020) Biomonitoring as an underused exposure assessment tool in occupational safety and health context-challenges and way forward. Int J Environ Res Public Health 17:5884

    Article  PubMed  PubMed Central  Google Scholar 

  • Zare Jeddi M, Hopf NB, Viegas S, Price AB, Paini A, van Thriel C, Benfenati E, Ndaw S, Bessems J, Behnisch PA, Leng G, Duca RC, Verhagen H, Cubadda F, Brennan L, Ali I, David A, Mustieles V, Fernandez MF, Louro H, Pasanen-Kase R (2021) Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Environ Int 146:106257

    Article  CAS  PubMed  Google Scholar 

  • Zhivin S, Laurier D, Caër-Lorho S, Acker A, Guseva Canu I (2013) Impact of chemical exposure on cancer mortality in a French cohort of uranium processing workers. Am J Ind Med 56:1262–1271

    CAS  PubMed  Google Scholar 

  • Zhivin S, Laurier D, Guseva Canu I (2014) Health effects of occupational exposure to uranium: do physicochemical properties matter? Int J Radiat Biol 90:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Zhivin S, Guseva Canu I, Davesne E, Blanchardon E, Garsi JP, Samson E, Niogret C, Zablotska LB, Laurier D (2018) Circulatory disease in French nuclear fuel cycle workers chronically exposed to uranium: a nested case-control study. Occup Environ Med 75:270–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Guseva Canu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guseva Canu, I. (2023). Chemical Hazards at Work and Occupational Diseases Using Job-Exposure Matrices. In: Wahrendorf, M., Chandola, T., Descatha, A. (eds) Handbook of Life Course Occupational Health. Handbook Series in Occupational Health Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-30492-7_4

Download citation

Publish with us

Policies and ethics