Skip to main content

Bioactive Compounds and Biological Activities of Peruvian Maca (Lepidium meyenii Walp.)

  • Living reference work entry
  • First Online:
Bioactive Compounds in the Storage Organs of Plants

Abstract

Lepidium meyenii (Peruvian maca or maca) is a medicinal plant native to the Peruvian Andes region that grows in adverse environments, such as extreme cold and intense sunlight. Maca has different variations depending on the color of its root, and 13 types have already been identified. Many biological activities have already been identified in maca extracts, such as immunomodulatory, anti-inflammatory, and antidepressive activities. Maca extracts contain several chemical substances that have already been identified, including glucosinolates, alkaloids, polysaccharides, flavonoids, fatty acids, and macamides. Macamides are an exclusive class of compounds present in maca extracts and are the main responsible compounds for the pharmacological properties of the extracts. They are composed of benzylamine and fatty acids, and 32 macamides have already been identified. Macamides have shown biological activities like neuroprotection, antitumoral, and antifatigue activities. Therefore, maca and their isolated compounds, the macamides, are potential therapeutic targets in treating various diseases and disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ATM:

Ataxia-telangiectasia mutated

CORT:

Corticosterone

EEM:

Maca ethanol extract

HO-1:

Heme oxygenase-1

HRMS:

High-resolution mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

LC-UV:

Liquid chromatography-ultraviolet

LOX:

Lipoxygenase enzyme

M:

18:1 N-(3-Methoxybenzyl)-9Z-octadecenamide

M:

18:2 N-(3-Methozybenzyl)-(9Z,12Z)-octadecadienamide

M:

18:3 N-(3-Methozybenzyl)-(9Z,12Z,15Z)-octadecatrienamide

MAC:

18:1 N-(3-Methoxybenzyl) oleamide

MAC:

18:2 N-(3-Methoxybenzyl) linoleamide

MAC:

18:3 N-(3-Methoxybenzyl) linolenamide

MBOC:

N-(3-Methoxybenzyl)-9,12,15-octadecatrienamide

MDA:

Malondialdehyde

MMP:

Mitochondrial membrane potential

MnCl2:

Manganese chloride

MS:

Mass spectrometry

NB-EPA:

N-Benzyl eicosapentaenamide

NBH:

N-Benzyl-hexadecanamide

NMR:

Nuclear magnetic resonance

NO:

Nitric oxide

OVX:

Ovariectomized

PPARγ:

Human peroxisome proliferator-activated receptor gamma

ROS:

Reactive oxygen species

TDF:

Testicular dysfunction

TM3:

Mouse Leydig cells

References

  1. Gonzales GF, Alarcón-Yaquetto DE (2018) Maca, a nutraceutical from the Andean highlands. In: Therapeutic foods. Elsevier, London, pp 373–395

    Chapter  Google Scholar 

  2. Gonzales GF, Gonzales C, Gonzales-Castañeda C (2009) Lepidium meyenii (Maca): a plant from the highlands of Peru – from tradition to science. Forsch Komplementmed 16:373–380. https://doi.org/10.1159/000264618

    Article  PubMed  Google Scholar 

  3. Carvalho FV, Fonseca Santana L, Diogenes A, da Silva V et al (2021) Combination of a multiplatform metabolite profiling approach and chemometrics as a powerful strategy to identify bioactive metabolites in Lepidium meyenii (Peruvian maca). Food Chem 364:130453. https://doi.org/10.1016/j.foodchem.2021.130453

    Article  CAS  PubMed  Google Scholar 

  4. He P, Pan L, Wu H et al (2022) Isolation, identification, and immunomodulatory mechanism of peptides from Lepidium meyenii (Maca) protein hydrolysate. J Agric Food Chem 70:4328–4341. https://doi.org/10.1021/acs.jafc.1c08315

    Article  CAS  PubMed  Google Scholar 

  5. Zhou B, Chen Y, Luo H et al (2023) Effect of maca (Lepidium meyenii) extract on non-obstructive azoospermia in male mice. J Ethnopharmacol 307:116228. https://doi.org/10.1016/j.jep.2023.116228

    Article  CAS  PubMed  Google Scholar 

  6. Jiao M, Dong Q, Zhang Y et al (2021) Neuroprotection of n-benzyl eicosapentaenamide in neonatal mice following hypoxic-ischemic brain injury. Molecules 26:3108. https://doi.org/10.3390/molecules26113108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carvalho FV, Ribeiro PR (2019) Structural diversity, biosynthetic aspects, and LC-HRMS data compilation for the identification of bioactive compounds of Lepidium meyenii. Food Res Int 125:108615. https://doi.org/10.1016/j.foodres.2019.108615

    Article  CAS  PubMed  Google Scholar 

  8. Zhu H, Hu B, Hua H et al (2020) Macamides: a review of structures, isolation, therapeutics and prospects. Food Res Int 138:109819

    Article  CAS  PubMed  Google Scholar 

  9. Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61:931–954. https://doi.org/10.2307/41679341

    Article  Google Scholar 

  10. Marín-Bravo M (2003) Histología de la Maca, Lepidium meyenii Walpers (Brassicaceae). Rev Peru Biol 10:101–108

    Article  Google Scholar 

  11. Meissner HO, Xu L, Wan W, Yi F (2019) Glucosinolates profiles in Maca phenotypes cultivated in Peru and China (Lepidium peruvianum syn. L. meyenii). Phytochem Lett 31:208–216. https://doi.org/10.1016/J.PHYTOL.2019.04.011

    Article  CAS  Google Scholar 

  12. Carvalho FV, Gomes Ferraz C, Ribeiro PR (2020) Pharmacological activities of the nutraceutical plant Lepidium meyenii: a critical review. J Food Chem Nanotechnol 6:107–116. https://doi.org/10.17756/jfcn.2020-091

    Article  Google Scholar 

  13. Gonzales GF (2010) MACA: Del alimento perdido de los Incas al milagro de los Andes: Estudio de seguridad alimentaria y nutricional. Seguranca Aliment Nutr Campinas 16–17:16–36. https://doi.org/10.20396/SAN.V17I1.8634797

    Article  Google Scholar 

  14. Gonzales GF (2012) Ethnobiology and ethnopharmacology of Lepidium meyenii (Maca), a plant from the peruvian highlands. Evid Based Complement Alternat Med 2012:193496. https://doi.org/10.1155/2012/193496

    Article  PubMed  Google Scholar 

  15. Hermann M, Heller J (1997) Andean roots and tubers: ahipa, arracacha, maca and yacon. IPGRI, Rome

    Google Scholar 

  16. Chen L, Li J, Fan L (2017) The nutritional composition of maca in hypocotyls (Lepidium meyenii walp.) cultivated in different regions of China. J Food Qual 2017:3749627. https://doi.org/10.1155/2017/3749627

    Article  CAS  Google Scholar 

  17. Li J, Chen L, Li J et al (2017) The composition analysis of Maca (Lepidium meyenii Walp.) from Xinjiang and its antifatigue activity. J Food Qual 2017:1–7. https://doi.org/10.1155/2017/2904951

    Article  CAS  Google Scholar 

  18. Dini I, Tenore GC, Dini A (2002) Glucosinolates from Maca (Lepidium meyenii). Biochem Syst Ecol 30:1087–1090. https://doi.org/10.1016/S0305-1978(02)00058-3

    Article  CAS  Google Scholar 

  19. Campos D, Chirinos R, Barreto O et al (2013) Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Ind Crop Prod 49:747–754. https://doi.org/10.1016/j.indcrop.2013.06.021

    Article  CAS  Google Scholar 

  20. Ikeuchi M, Koyama T, Takei S et al (2009) Effects of Benzylglucosinolate on endurance capacity in mice. J Health Sci 55:178–182

    Article  CAS  Google Scholar 

  21. Clément C, Diazgrados DA, Avula B et al (2010) Influence of colour type and previous cultivation on secondary metabolites in hypocotyls and leaves of maca (Lepidium meyenii Walpers). J Sci Food Agric 90:861–869. https://doi.org/10.1002/jsfa.3896

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Ammermann U, Quirós CF (2001) Glucosinolate contents in maca (Lepidium peruvianum Chacón) seeds, sprouts, mature plants and several derived commercial products. Econ Bot 55:255–262. https://doi.org/10.1007/BF02864563

    Article  CAS  Google Scholar 

  23. Yábar E, Pedreschi R, Chirinos R, Campos D (2011) Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chem 127:1576–1583. https://doi.org/10.1016/j.foodchem.2011.02.021

    Article  CAS  Google Scholar 

  24. Kim SJ, Ishii G (2006) Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci Plant Nutr 52:394–400. https://doi.org/10.1111/j.1747-0765.2006.00049.x

    Article  CAS  Google Scholar 

  25. Piacente S, Carbone V, Plaza A et al (2002) Investigation of the tuber constituents of maca (Lepidium meyenii Walp.). J Agric Food Chem 50:5621–5625. https://doi.org/10.1021/jf020280x

    Article  CAS  PubMed  Google Scholar 

  26. Yan S, Wei J, Chen R (2022) Evaluation of the biological activity of glucosinolates and their enzymolysis products obtained from Lepidium meyenii Walp. (Maca). Int J Mol Sci 23:14756. https://doi.org/10.3390/ijms232314756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishida M, Hara M, Fukino N et al (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59. https://doi.org/10.1270/jsbbs.64.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roy A (2017) A review on the alkaloids an important therapeutic compound from plants. Int J Plant Biotechnol 3:1–9. https://doi.org/10.0231/JIM.0b013e3181948b37

    Article  Google Scholar 

  29. Cui B, Zheng BL, He K, Zheng QY (2003) Imidazole alkaloids from Lepidium meyenii. J Nat Prod 66:1101–1103. https://doi.org/10.1021/np030031i

    Article  CAS  PubMed  Google Scholar 

  30. Jin W, Chen X, Dai P, Yu L (2016) Lepidiline C and D: two new imidazole alkaloids from Lepidium meyenii Walpers (Brassicaceae) roots. Phytochem Lett 17:158–161. https://doi.org/10.1016/j.phytol.2016.07.001

    Article  CAS  Google Scholar 

  31. Zhou M, Zhang RQ, Chen YJ et al (2018) Three new pyrrole alkaloids from the roots of Lepidium meyenii. Phytochem Lett 23:137–140. https://doi.org/10.1016/j.phytol.2017.12.002

    Article  CAS  Google Scholar 

  32. Liu JH, Zhang RR, Peng XR et al (2021) Lepipyrrolins A–B, two new dimeric pyrrole 2-carbaldehyde alkaloids from the tubers of Lepidium meyenii. Bioorg Chem 112:104834. https://doi.org/10.1016/j.bioorg.2021.104834

    Article  CAS  PubMed  Google Scholar 

  33. Muhammad I, Zhao J, Dunbar DC, Khan IA (2002) Constituents of Lepidium meyenii “maca”. Phytochemistry 59:105–110. https://doi.org/10.1016/S0031-9422(01)00395-8

    Article  CAS  PubMed  Google Scholar 

  34. Geng HC, Yang DS, Chen XL et al (2018) Meyeniihydantoins A–C, three novel hydantoin derivatives from the roots of Lepidium meyenii Walp. Phytochem Lett 26:208–211. https://doi.org/10.1016/j.phytol.2018.06.010

    Article  CAS  Google Scholar 

  35. Tian XX, Peng XR, Yu MY et al (2018) Hydantoin and thioamide analogues from Lepidium meyenii. Phytochem Lett 25:70–73. https://doi.org/10.1016/j.phytol.2018.03.011

    Article  CAS  Google Scholar 

  36. Metwally MA, Abdel-Latif E (2012) Thiohydantoins: synthetic strategies and chemical reactions. J Sulfur Chem 33:229–257. https://doi.org/10.1080/17415993.2011.643550

    Article  CAS  Google Scholar 

  37. Yu MY, Qin XJ, Peng XR et al (2017) Macathiohydantoins B–K, novel thiohydantoin derivatives from Lepidium meyenii. Tetrahedron 73:4392–4397. https://doi.org/10.1016/j.tet.2017.05.096

    Article  CAS  Google Scholar 

  38. Yu MY, Qin XJ, Shao LD et al (2017) Macahydantoins A and B, two new thiohydantoin derivatives from Maca (Lepidium meyenii): structural elucidation and concise synthesis of macahydantoin A. Tetrahedron Lett 58:1684–1686. https://doi.org/10.1016/j.tetlet.2017.03.038

    Article  CAS  Google Scholar 

  39. Zhang R, Liu J, Yan H et al (2021) Macathiohydantoin L, a novel thiohydantoin bearing a thioxohexahydroimidazo [1,5-a] pyridine moiety from maca (Lepidium meyenii Walp.). Molecules 26:4934. https://doi.org/10.3390/molecules26164934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng XR, Zhang RR, Liu JH et al (2021) Lepithiohydimerins A–D: four pairs of neuroprotective thiohydantoin dimers bearing a disulfide bond from Maca (Lepidium meyenii Walp.). Chin J Chem 39:2738–2744. https://doi.org/10.1002/cjoc.202100353

    Article  CAS  Google Scholar 

  41. Zhou M, Ma HY, Liu ZH et al (2017) (+)-Meyeniins A–C, novel hexahydroimidazo[1,5-c]thiazole derivatives from the tubers of Lepidium meyenii: complete structural elucidation by biomimetic synthesis and racemic crystallization. J Agric Food Chem 65:1887–1892. https://doi.org/10.1021/acs.jafc.6b05805

    Article  CAS  PubMed  Google Scholar 

  42. Sandoval M, Okuhama NN, Angeles FM et al (2002) Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem 79:207–213. https://doi.org/10.1016/S0308-8146(02)00133-4

    Article  CAS  Google Scholar 

  43. Bae J, Kim N, Shin Y et al (2020) Activity of catechins and their applications. Biomed Dermatol 4:8. https://doi.org/10.1186/s41702-020-0057-8

    Article  Google Scholar 

  44. Valentová K, Buckiová D, Křen V et al (2006) The in vitro biological activity of Lepidium meyenii extracts. Cell Biol Toxicol 22:91–99. https://doi.org/10.1007/s10565-006-0033-0

    Article  PubMed  Google Scholar 

  45. Nattagh-Eshtivani E, Barghchi H, Pahlavani N et al (2022) Biological and pharmacological effects and nutritional impact of phytosterols: a comprehensive review. Phytother Res 36:299–322

    Article  CAS  PubMed  Google Scholar 

  46. Meissner HO, Mscisz A, Piatkowska E et al (2016) Peruvian maca (Lepidium peruvianum): (II) phytochemical profiles of four prime maca phenotypes grown in two geographically-distant locations. Int J Biomed Sci 12:9–24

    Article  Google Scholar 

  47. Qiu C, Zhu T, Lan L et al (2016) Analysis of Maceaene and Macamide contents of petroleum ether extract of black, yellow, and purple Lepidium meyenii (Maca) and their antioxidant effect on diabetes mellitus rat model. Braz Arch Biol Technol 59:1–9. https://doi.org/10.1590/1678-4324-2016150462

    Article  CAS  Google Scholar 

  48. Zhao J, Muhammad I, Dunbar DC et al (2005) New alkamides from maca (Lepidium meyenii). J Agric Food Chem 53:690–693. https://doi.org/10.1021/jf048529t

    Article  CAS  PubMed  Google Scholar 

  49. Yoon BK, Jackman JA, Valle-González ER, Cho NJ (2018) Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci 19:1114

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang T, Sun CH, Zhong HB et al (2019) N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide promotes bone formation via the canonical Wnt/β-catenin signaling pathway. Phytother Res 33:1074–1083. https://doi.org/10.1002/ptr.6301

    Article  CAS  PubMed  Google Scholar 

  51. Yu Z, Jin W, Cui Y et al (2019) Protective effects of macamides from: Lepidium meyenii Walp. against corticosterone-induced neurotoxicity in PC12 cells. RSC Adv 9:23096–23108. https://doi.org/10.1039/c9ra03268a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu Z, Liu H, Li D et al (2020) N-(3-Methozybenzyl)-(9 Z,12 Z,15 Z)-octadecatrienamide from maca (Lepidium meyenii Walp.) ameliorates corticosterone-induced testicular toxicity in rats. Food Funct 11:7762–7774. https://doi.org/10.1039/d0fo00890g

    Article  CAS  PubMed  Google Scholar 

  53. Pan Y, Zhang J, Li H et al (2015) Simultaneous analysis of macamides in Maca (Lepidium meyenii) with different drying process by liquid chromatography tandem mass spectrometry. Food Anal Methods 9:1686–1695. https://doi.org/10.1007/s12161-015-0346-9

    Article  Google Scholar 

  54. Zhu H, Wang R, Hua H et al (2022) The macamide relieves fatigue by acting as inhibitor of inflammatory response in exercising mice: from central to peripheral. Eur J Pharmacol 917:174758. https://doi.org/10.1016/j.ejphar.2022.174758

    Article  CAS  PubMed  Google Scholar 

  55. Zhang KY, Li CN, Zhang NX et al (2023) UPLC-QE-Orbitrap-based cell metabolomics and network pharmacology to reveal the mechanism of N-Benzylhexadecanamide isolated from Maca (Lepidium meyenii Walp.) against testicular dysfunction. Molecules 28:4064. https://doi.org/10.3390/molecules28104064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tao H, Shi H, Wang M, Xu Y (2023) Macamide B suppresses lung cancer progression potentially via the ATM signaling pathway. Oncol Lett 25:115. https://doi.org/10.3892/ol.2023.13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu T, Peng Z, Lai W et al (2023) The efficient synthesis and anti-fatigue activity evaluation of macamides: the unique bioactive compounds in Maca. Molecules 28:3943. https://doi.org/10.3390/molecules28093943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng BL, He K, Kim CH et al (2000) Basic science: effect of a lipidic extract from Lepidium meyenii on sexual behavior in mice and rats. Urology 55(20):598–602

    Article  CAS  PubMed  Google Scholar 

  59. Zheng BL (2001) Extract of Lepidium meyenii roots for pharmaceutical applications. United States Patent and Trademark Office, Washington, DC, p 20

    Google Scholar 

  60. Pan Y, Zhang J, Li H et al (2016) Characteristic fingerprinting based on macamides for discrimination of maca (Lepidium meyenii) by LC/MS/MS and multivariate statistical analysis. J Sci Food Agric 96:4475–4483. https://doi.org/10.1002/jsfa.7660

    Article  CAS  PubMed  Google Scholar 

  61. McCollom MM, Villinski JR, McPhail KL et al (2005) Analysis of macamides in samples of Maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochem Anal 16:463–469. https://doi.org/10.1002/pca.871

    Article  CAS  PubMed  Google Scholar 

  62. Chain F, Iramain MA, Grau A et al (2017) Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques. J Mol Struct 1128:653–664. https://doi.org/10.1016/j.molstruc.2016.09.043

    Article  CAS  Google Scholar 

  63. Ye YQ, Ma ZH, Yang QF et al (2018) Isolation and synthesis of a new benzylated alkamide from the roots of Lepidium meyenii. Nat Prod Res 1–7. https://doi.org/10.1080/14786419.2018.1499633

  64. Xia C et al (2018) Novel macamides from maca (Lepidium meyenii Walpers) root and their cytotoxicity. Phytochem Lett J 25:65–69. https://doi.org/10.1016/j.phytol.2018.03.001

    Article  CAS  Google Scholar 

  65. Xia C, Deng J, Pan Y et al (2021) Comprehensive profiling of macamides and fatty acid derivatives in Maca with different postharvest drying processes using UPLC-QTOF-MS. ACS Omega 6:24484–24492. https://doi.org/10.1021/acsomega.1c02926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peng XR, Huang YJ, Liu JH et al (2021) 1H qNMR-based quantitative analysis of total macamides in five maca (Lepidium meyenii Walp.) dried naturally. J Food Compos Anal 100:103917. https://doi.org/10.1016/j.jfca.2021.103917

    Article  CAS  Google Scholar 

  67. Zha R, Ge E, Guo L et al (2021) A newly identified polyunsaturated macamide alleviates dextran sulfate sodium-induced colitis in mice. Fitoterapia 152:104916. https://doi.org/10.1016/j.fitote.2021.104916

    Article  CAS  PubMed  Google Scholar 

  68. Ganzera M, Zhao J, Muhammad I, Khan IA (2002) Chemical profiling and standardization of Lepidium meyenii (Maca) by reversed phase high performance liquid chromatography. Chem Pharm Bull (Tokyo) 50:988–991. https://doi.org/10.1248/cpb.50.988

    Article  CAS  PubMed  Google Scholar 

  69. Esparza E, Hadzich A, Kofer W et al (2015) Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry 116:138–148. https://doi.org/10.1016/j.phytochem.2015.02.030

    Article  CAS  PubMed  Google Scholar 

  70. Wu H, Kelley CJ, Pino-Figueroa A et al (2013) Macamides and their synthetic analogs: evaluation of in vitro FAAH inhibition. Bioorg Med Chem 21:5188–5197. https://doi.org/10.1016/j.bmc.2013.06.034

    Article  CAS  PubMed  Google Scholar 

  71. Rios M (2012) Natural alkamides: pharmacology, chemistry and distribution. In: Drug discovery research in pharmacognosy. https://doi.org/10.5772/32093

  72. Alvarado AT, Navarro C, Pineda M et al (2022) Activity of Lepidium meyenii Walp (purple maca) in immunosuppressed Oryctolagus cuniculus (albino rabbits). Pharmacia 69:501–507. https://doi.org/10.3897/pharmacia.69.e80033

    Article  CAS  Google Scholar 

  73. Fei WT, Yue N, Li AM et al (2022) Immunomodulatory Effects of Lepidium meyenii Walp. polysaccharides on an immunosuppression model induced by cyclophosphamide. J Immunol Res 2022:1210890. https://doi.org/10.1155/2022/1210890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fu P, Luo S, Liu Z et al (2023) Oral supplementation with Maca improves social recognition deficits in the valproic acid animal model of autism spectrum disorder. Brain Sci 13:316. https://doi.org/10.3390/brainsci13020316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marín-Tello C, Villafana-Medina H, Malpartida-Tello V et al (2021) Effect of Lepidium meyenii (Maca) on spatial memory and brain oxidative damage of ovariectomised-rats exposed to mobile phone. Vitae 28:1–8. https://doi.org/10.17533/udea.vitae.v28n1a342472

    Article  Google Scholar 

  76. Ybañez-Julca RO, Quispe-Díaz IM, Asunción-Alvarez D et al (2021) Antidepressant-like behavioral and spatial memory effects in Peruvian red maca (lepidium meyenii)-treated rats. Pharm J 13:81–88. https://doi.org/10.5530/pj.2021.13.12

    Article  CAS  Google Scholar 

  77. Zou YY, Wang DW, Yan YM, Cheng YX (2021) Lignans from Lepidium meyenii and their anti-inflammatory activities. Chem Biodivers 18:e2100231. https://doi.org/10.1002/cbdv.202100231

    Article  CAS  PubMed  Google Scholar 

  78. Lee YK, Jung SK, Chang YH (2020) Rheological properties of a neutral polysaccharide extracted from maca (Lepidium meyenii Walp.) roots with prebiotic and anti-inflammatory activities. Int J Biol Macromol 152:757–765. https://doi.org/10.1016/j.ijbiomac.2020.02.307

    Article  CAS  PubMed  Google Scholar 

  79. Yang J, Cho H, Gil M, Kim KE (2023) Anti-inflammation and anti-melanogenic effects of maca root extracts fermented using lactobacillus strains. Antioxidants 12:798. https://doi.org/10.3390/antiox12040798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gugnani KS, Vu N, Rondón-Ortiz AN et al (2018) Neuroprotective activity of macamides on manganese-induced mitochondrial disruption in U-87 MG glioblastoma cells. Toxicol Appl Pharmacol 340:67–76. https://doi.org/10.1016/j.taap.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  81. Li K, Li Z, Men L et al (2023) Deep eutectic solvent-based ultrasound-assisted strategy for simultaneous extraction of five macamides from Lepidium meyenii Walp and in vitro bioactivities. Foods 12:248. https://doi.org/10.3390/foods12020248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Carvalho, F.V., da Silva, V.D.A., Ribeiro, P.R. (2024). Bioactive Compounds and Biological Activities of Peruvian Maca (Lepidium meyenii Walp.). In: Murthy, H.N., Paek, K.Y., Park, SY. (eds) Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29006-0_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29006-0_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29006-0

  • Online ISBN: 978-3-031-29006-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics