Skip to main content

Assessment of the Phytochemical Constituents and Metabolites of Some Medicinal Plants and Herbal Remedies Used in the Treatment and Management of Injuries

  • Living reference work entry
  • First Online:
Herbal Medicine Phytochemistry

Abstract

This chapter discusses the phytochemical constituents and metabolites in some medicinal plants and herbal remedies used in the treatment and management of injuries. A meta-analysis was conducted to identify the studies that investigated the chemical composition and biological activity of these natural remedies. The medicinal plants and herbal medicine included in the review were chosen for their traditional use in wound healing and were found to contain a range of phytochemicals with known medicinal properties, such as flavonoids, terpenoids, alkaloids, and saponins. These phytochemicals have been proven to exhibit antioxidant, anti-inflammatory, and wound-healing activity in various in vitro and in vivo studies. In addition, the review identified several metabolites produced by these medicinal plants and herbal medicine that may contribute to their therapeutic effects. Overall, the results of this review suggest that medicinal plants and herbal medicine may be valuable sources of phytochemicals and metabolites with medicinal properties, and encourage their usage in the treatment and management of wounds. However, further research is needed to fully understand the mechanisms of action and potential therapeutic effects of these compounds. This involves research into the best doses and combinations of natural remedies for various sorts of wounds, along with research into their safety and effectiveness in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ernst E (2007) Herbal medicines: balancing benefits and risks. Novartis Found Symp 282:154–172. https://doi.org/10.1002/9780470319444.CH11

    Article  PubMed  Google Scholar 

  2. Balap A, Gaikwad A (2021) Challenges, advances and opportunities of herbal medicines in wound healing: a review. Int J Pharm Sci Rev Res 71:125–136. https://doi.org/10.47583/ijpsrr.2021.v71i01.015

    Article  CAS  Google Scholar 

  3. Kurian A (2012) Health benefits of herbs and spices. Handb Herbs Spices, 2nd ed 2:72–88

    Article  Google Scholar 

  4. Alasbahi RH, Groot MJ (2020) Evaluation of the wound healing activity of twelve herbal and non-herbal remedies used in Sana’a-Yemen for the treatment of wounds and burns. J Med Herbs Ethnomed:90–116. https://doi.org/10.25081/jmhe.2020.v6.6379

  5. Cauilan BY, Lungan MHT (2021) Wound healing activity of ointment infused with aqueous extracts of plants used by the agtas of Peñablanca and Malauegs of Rizal in the province of wound healing activity of ointment infused with aqueous extracts of plants used by the Agtas of Peñablanca. Int J Biol Sci. https://doi.org/10.12692/ijb/19.4.168-174

  6. World Health Organization Injuries and violence. https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence. Accessed 20 Jan 2023

  7. Namunana S, Lutoti S, Nyamaizi G, Agaba G, Apun I, Ssebunnya C, Tenywa GM, Wangalwa R, Kaggwa B, Fadhiru Kamba P, Musoke-Muweke D, Ogwang Engeu P (2018) Formulation, development and validation of a wound healing herbal ointment from extracts of Bidens pilosa and Aloe barbadensis. J Pharm Pharmacol Res 02. https://doi.org/10.26502/jppr.0008

  8. Mousavi SM, Nejad ZM, Hashemi SA, Salari M, Gholami A, Ramakrishna S, Chiang WH, Lai CW (2021) Bioactive agent-loaded electrospun nanofiber membranes for accelerating healing process: a review membranes (Basel) 11: https://doi.org/10.3390/MEMBRANES11090702

  9. Malabadi RB, Kolkar KP, Acharya M, Br N, Chalannavar RK (2022) Wound healing: role of traditional herbal medicine treatment. Int J Innov Scient Res Rev 4(12):3686–3691. https://doi.org/10.1128/JMP.40.8.2919-2921.2002

  10. Murray RZ, West ZE, Cowin AJ, Farrugia BL (2019) Development and use of biomaterials as wound healing therapies. Burn trauma 7. https://doi.org/10.1186/S41038-018-0139-7

  11. Napavichayanun S, Pienpinijtham P, Reddy N, Aramwit P (2021) Superior technique for the production of agarose dressing containing sericin and its wound healing property. Polymers (Basel) 13. https://doi.org/10.3390/POLYM13193370

  12. Patil TV, Patel DK, Dutta SD, Ganguly K, Randhawa A, Lim KT (2021) Carbon nanotubes-based hydrogels for bacterial eradiation and wound-healing. Applications Appl Sci 11. https://doi.org/10.3390/APP11209550

  13. Muhammad HS, Muhammad S (2005) The use of Lawsonia inermis linn. (henna) in the management of burn wound infections. Afr J Biotechnol 4:934–937

    Google Scholar 

  14. Lazarides MK, Giannoukas AD (2007) The role of hemodynamic measurements in the management of venous and ischemic ulcers. Int J Low Extrem Wounds 6:254–261. https://doi.org/10.1177/1534734607306878

    Article  CAS  PubMed  Google Scholar 

  15. Dwivedi G, Dwivedi S (2007) Sushruta – the Clinician – Teacher par Excellence. Hist Med 49:243–244

    Google Scholar 

  16. Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM (2022) Phytochemistry and biological activity of medicinal plants in wound healing: an overview of current research. Molecules 27:27. https://doi.org/10.3390/molecules27113566

    Article  CAS  Google Scholar 

  17. Ather S, Harding KG (2019) Wound management and dressings. Adv Text Wound Care:3–19. https://doi.org/10.1533/9781845696306.1.3

  18. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542. https://doi.org/10.1177/147323000903700531

    Article  CAS  PubMed  Google Scholar 

  19. Wilkinson HN, Hardman MJ (2020) Wound healing: cellular mechanisms and pathological outcomes: cellular mechanisms of wound repair. Open Biol 10. https://doi.org/10.1098/RSOB.200223

  20. Strodtbeck F (2001) Physiology of wound healing. Newborn Infant Nurs Rev 1:43–52. https://doi.org/10.1053/NBIN.2001.23176

    Article  Google Scholar 

  21. Sharma A, Khanna S, Kaur G, Singh I (2021) Medicinal plants and their components for wound healing applications. Futur J Pharm Sci 7. https://doi.org/10.1186/s43094-021-00202-w

  22. Nagori BP, Solanki R (2011) Undefined role of medicinal plants in wound healing. Res J Med Plant 5(4):392–405. https://scialert.net/abstract/?doi=rjmp.2011.392.405

  23. Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP (2016) Wound healing – a literature review. An Bras Dermatol 91:614–620

    Article  PubMed  PubMed Central  Google Scholar 

  24. Janis JE, Harrison B (2016) Wound healing: Part I. Basic science. Plast Reconstr Surg 138:9S–17S. https://doi.org/10.1097/PRS.0000000000002773

    Article  CAS  PubMed  Google Scholar 

  25. Mahmoud MF, Monti DM, Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, Maria D’alessandro A (2022) Phytochemistry and biological activity of medicinal plants in wound healing: an overview of current research. Molecules 27:27. https://doi.org/10.3390/molecules27113566

    Article  CAS  Google Scholar 

  26. Khaire M, Bigoniya J, Bigoniya P (2023) An insight into the potential mechanism of bioactive phytocompounds in the wound management. Pharmacogn Rev 17:43–68. https://doi.org/10.5530/097627870153

    Article  CAS  Google Scholar 

  27. Owen JA, Punt J, Stranford SAJP (2013) Kuby immunology 7th Edition 2013 by Judy Owen, 7th edn. W.H. Freeman and Company, New York

    Google Scholar 

  28. Wallace HA, Zito PM (2022) Wound healing phases. StatPearls Publishing

    Google Scholar 

  29. Tsioutsiou EE, Miraldi E, Governa P, Biagi M, Giordani P, Cornara L (2017) Skin Wound Healing: From Mediterranean Ethnobotany to Evidence based Phytotherapy. Athens J Sci 4:199–212. https://doi.org/10.30958/ajs.4-3-2

    Article  Google Scholar 

  30. Hart J (2013) Inflammation 1: its role in the healing of acute wounds. 11:205–209. https://doi.org/10.12968/JOWC.2002.11.6.26411

  31. Hess C (2000) Skin care basics. Adv Skin Wound Care 13:127–128

    CAS  PubMed  Google Scholar 

  32. Flanagan M (2013) The physiology of wound healing. J Wound Care 9:299–300. https://doi.org/10.12968/JOWC.2000.9.6.25994

    Article  Google Scholar 

  33. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77:509–528. https://doi.org/10.1016/S0039-6109(05)70566-1

    Article  CAS  PubMed  Google Scholar 

  34. Goldman R (2004) Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 17:24–35

    Article  PubMed  Google Scholar 

  35. Broughton G, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117:1e-S-32e-S. https://doi.org/10.1097/01.PRS.0000222562.60260.F9

    Article  PubMed  Google Scholar 

  36. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25:9–18. https://doi.org/10.1016/J.CLINDERMATOL.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  37. Robson MC, Steed DL, Franz MG (2001) Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg 38:A1–140. https://doi.org/10.1067/MSG.2001.111167

    Article  Google Scholar 

  38. Vanwijck R (2001) Biologie chirurgicale de la cicatrisation. Bull Mem Acad R Med Belg 156:185

    PubMed  Google Scholar 

  39. Komarcević A (2000) The modern approach to wound treatment. Med Pregl 53:363–368

    PubMed  Google Scholar 

  40. Givol O, Kornhaber R, Visentin D, Cleary M, Haik J, Harats M (2019) A systematic review of Calendula officinalis extract for wound healing. Wound Repair Regen 27:548–561

    Article  PubMed  Google Scholar 

  41. Arribas-López E, Zand N, Ojo O, Snowden MJ, Kochhar T (2022) A systematic review of the effect of Centella asiatica on wound healing. Int J Environ Res Public Health 19:3266

    Article  PubMed  PubMed Central  Google Scholar 

  42. Barchitta M, Maugeri A, Favara G, San Lio RM, Evola G, Agodi A, Basile G (2019) Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin. Int J Mol Sci 20:1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shankar S, Kumar S, Saha S, Singh K, Patel A, Pathak D (2022) Review of phytomedicine and its potential contribution to wound healing. Int J Scient Develop Res 7(12):109–120.

    Google Scholar 

  44. Torfs H, Poels J, Detheux M, Dupriez V, Van Loy T, Vercammen L, Vassart G, Parmentier M, Vanden Broeck J (2002) Recombinant aequorin as a reporter for receptor-mediated changes of intracellular Ca2+−levels in Drosophila S2 cells. Invertebr Neurosci 4:119–124. https://doi.org/10.1007/s10158-001-0013-2

    Article  CAS  Google Scholar 

  45. Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP (2020) Pharmacological update properties of aloe vera and its major active constituents. Molecules 13;25(6):1324. https://doi.org/10.3390/molecules25061324. PMID: 32183224; PMCID: PMC7144722

  46. Basch E, Bent S, Foppa I, Haskmi S, Kroll D, Mele M, Szapary P, Ulbricht C, Vora M, Yong S (2009) Marigold (Calendula officinalis L.). 6:135–159. https://doi.org/10.1080/J157V06N03_08

  47. Jan N, Iqbal Andrabi K, John R (2017) Calendula officinalis – an important medicinal plant with potential biological properties. Proc Indian Natn Sci Acad 83:769–787. https://doi.org/10.16943/ptinsa/2017/49126

    Article  Google Scholar 

  48. Muley BP, Khadabadi SS, Banarase NB (2009) Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Trop J Pharm Res 8:455–465. https://doi.org/10.4314/tjpr.v8i5.48090

    Article  CAS  Google Scholar 

  49. Maria Leal Parente L, de Souza Lino RJ, Manrique Faustino Tresvenzol L, Clare Vinaud M, Realino de Paula J, Margarida Paulo N (2012) Wound healing and anti-inflammatory effect in animal models of Calendula officinalis L. growing in Brazil. 2012:375671. https://doi.org/10.1155/2012/375671

  50. Shafeie N, Naini AT, Jahromi HK (2015) Comparison of different concentrations of calendula officinalis gel on cutaneous wound healing. Biomed Pharmacol J 8:979–992. https://doi.org/10.13005/BPJ/850

    Article  Google Scholar 

  51. Fronza M, Heinzmann B, Hamburger M, Laufer S, Merfort I (2009) Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J Ethnopharmacol 126:463–467. https://doi.org/10.1016/J.JEP.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  52. Nicolaus C, Junghanns S, Hartmann A, Murillo R, Ganzera M, Merfort I (2017) In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J Ethnopharmacol 196:94–103. https://doi.org/10.1016/J.JEP.2016.12.006

    Article  PubMed  Google Scholar 

  53. Eghdampour F, Jahdie F, Kheyrkhah M, Taghizadeh M, Naghizadeh S, Hagani H (2013) The impact of aloe vera and calendula on perineal healing after episiotomy in primiparous women: a randomized clinical trial. J Caring Sci 2:279–286. https://doi.org/10.5681/jcs.2013.033

    Article  PubMed  PubMed Central  Google Scholar 

  54. Babu M, Prasad O, Murthy T (2011) Comparison of the dermal wound healing of Centella asiatica extract impregnated collagen and crosslinked collagen scaffolds. J Chem Pharm Res 3:353–362

    Google Scholar 

  55. Matić IZ, Ergün S, Đorđić Crnogorac M, Misir S, Aliyazicioğlu Y, Damjanović A, Džudžević-Čančar H, Stanojković T, Konanç K, Petrović N (2021) Cytotoxic activities of Hypericum perforatum L. extracts against 2D and 3D cancer cell models. Cytotechnology 73:373–389. https://doi.org/10.1007/S10616-021-00464-5/METRICS

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mikail HG (2016) Pleiotropic activity of Hypericum perforatum L. ~ 256 ~. J Med Plants Stud 4:256–258. https://doi.org/10.1007/S10298-010-therapie2010

    Article  Google Scholar 

  57. Jarić S, Kostić O, Mataruga Z, Pavlović D, Pavlović M, Mitrović M, Pavlović P (2018) Traditional wound-healing plants used in the Balkan region (Southeast Europe). J Ethnopharmacol 211:311–328. https://doi.org/10.1016/j.jep.2017.09.018

    Article  PubMed  Google Scholar 

  58. Nayak SB, Isik K, Marshall JR (2017) Wound-healing potential of oil of hypercium perforatum in excision wounds of male sprague dawley rats. Adv Wound Care 6:401–406. https://doi.org/10.1089/wound.2017.0746

    Article  Google Scholar 

  59. Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R (2004) Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25:1911–1917. https://doi.org/10.1016/S0142-9612(03)00625-2

    Article  CAS  PubMed  Google Scholar 

  60. Saraswathy N, Rohit R, Shanmugam K, Sozheeswari C, Ramalingam P (2012) A preliminary investigation of turmeric-agar composite film as bioactive wound dressing material on excision wound in rat model. Indian J Nat Prod Resour 3:237–241

    Google Scholar 

  61. Sharifi-Rad J, El Rayess Y, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N (2020) Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 11:1021

    Article  CAS  Google Scholar 

  62. Schmidt M (2022) Accelerated wound healing with comfrey herb cream. Phytotherapie 2022-innovativ. HERBResearch. Germany. https://doi.org/10.13140/RG.2.2.19978.34249

  63. Stickel F, Seitz HK (2000) The efficacy and safety of comfrey. Public Health Nutr 3:501–508

    Article  CAS  PubMed  Google Scholar 

  64. Araújo LU, Reis PG, Barbosa LCO, Saúde-Guimarães DA, Grabe-Guimarães A, Mosqueira VCF, Carneiro CM, Silva-Barcellos NMS (2012) In vivo wound healing effects of Symphytum officinale L. leaves extract in different topical formulations. Pharmazie 67:355–360. https://doi.org/10.1691/ph.2012.1563

    Article  CAS  PubMed  Google Scholar 

  65. Sharifi-Rad M, Mnayer D, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Coutinho HDM, Salehi B, Martorell M, del Mar CM, Soltani-Nejad A, Uribe YAH, Yousaf Z, Iriti M, Sharifi-Rad J (2018) Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phyther Res 32:1653–1663. https://doi.org/10.1002/ptr.6101

    Article  Google Scholar 

  66. Mistríková I, Vaverková Š (2007) Morphology and anatomy of Echinacea purpurea, E. angustifolia, E. pallida and Parthenium integrifolium. Biologia (Bratisl) 62:2–5. https://doi.org/10.2478/s11756-007-0006-7

    Article  Google Scholar 

  67. Rousseau B, Tateya I, Lim X, Munoz-del-Rio A, Bless DM (2006) Investigation of anti-hyaluronidase treatment on vocal fold wound healing. J Voice 20:443–451. https://doi.org/10.1016/j.jvoice.2005.06.002

    Article  PubMed  Google Scholar 

  68. Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P (2016) Arnica montana effects on gene expression in a human macrophage cell line. Evaluation by quantitative real-time PCR. Homeopathy 105:131–147. https://doi.org/10.1016/j.homp.2016.02.001

    Article  PubMed  Google Scholar 

  69. Kriplani P (2017) Arnica montana L. – a plant of healing: review. 69:925–945. https://doi.org/10.1111/jphp.12724

  70. Balm L, Engel R, Szabó K, Abrankó L, Rendes K, Füzy A (2016) Effect of arbuscular mycorrhizal fungi on the growth and the polyphenol profile of marjoram, lemon balm, and marigold. J Agric Food Chem 64:3733–3742

    Article  Google Scholar 

  71. Ganzera M, Egger C, Zidorn C, Stuppner H (2008) Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography. Anal Chim Acta 614:196–200. https://doi.org/10.1016/J.ACA.2008.03.023

    Article  CAS  PubMed  Google Scholar 

  72. Paßreiter CM (1992) Co-occurrence of 2-pyrrolidineacetic acid with the pyrrolizidines tussilaginic acid and isotussilaginic acid and their 1-epimers in Arnica species and Tussilago farfara. Phytochemistry 31:4135–4137. https://doi.org/10.1016/0031-9422(92)80428-H

    Article  Google Scholar 

  73. Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36. https://doi.org/10.1016/0278-6915(84)90033-4

    Article  CAS  PubMed  Google Scholar 

  74. Kriplani P, Guarve K, Baghael US (2017) Arnica montana L. – a plant of healing: review. J Pharm Pharmacol 69:925–945. https://doi.org/10.1111/JPHP.12724

    Article  CAS  PubMed  Google Scholar 

  75. Petrova M, Zayova E, Vassilevska-Ivanova R, Vlahova M (2012) Biotechnological approaches for cultivation and enhancement of secondary metabolites in Arnica montana L. Acta Physiol Plant 34:1597–1606. https://doi.org/10.1007/S11738-012-0987-X

    Article  CAS  Google Scholar 

  76. Singh R, Chaudhary M, Chauhan ES (2022) Stellaria media Linn.: A comprehensive review highlights the nutritional, phytochemistry, and pharmacological activities. J. HerbMed Pharmacol 11:330–338

    Article  CAS  Google Scholar 

  77. Harish B, Pankaj S (2022) Lesser-known edible plants of Karsog Valley. In: Rethinking Himalaya: Its Scope and Protection, 1st edn. Blue Rose Publishers, Noida, pp 24–39

    Google Scholar 

  78. Hu YM, Wang H, Ye WC, Qian L (2010) New triterpenoid from Stellaria media (L.) Cyr. Nat Prod Res 23:1274–1278. https://doi.org/10.1080/14786410701642532

    Article  CAS  Google Scholar 

  79. Hu Y, Ye W, Li Q, Tian H, Wang H, Du H (2006) C-glycosylflavones from Stellaria media. Chin J Nat Med 4:420–424

    CAS  Google Scholar 

  80. Rogowska M, Lenart M, Srečec S, Ziaja M, Parzonko A, Bazylko A (2017) Chemical composition, antioxidative and enzyme inhibition activities of chickweed herb (Stelaria media L., Vill.) ethanolic and aqueous extracts. Ind Crop Prod 97:448–454. https://doi.org/10.1016/J.INDCROP.2016.12.058

    Article  CAS  Google Scholar 

  81. Böttger S, Melzig MF (2011) Triterpenoid saponins of the Caryophyllaceae and Illecebraceae family. Phytochem Lett 4:59–68. https://doi.org/10.1016/J.PHYTOL.2010.08.003

    Article  Google Scholar 

  82. Mithril C, Dragsted LO (2012) Safety evaluation of some wild plants in the New Nordic Diet. Food Chem Toxicol 50:4461–4467. https://doi.org/10.1016/J.FCT.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  83. Michael KJ, Tomczyk WM Flavonoids of the caryophyllaceae. https://doi.org/10.1007/s11101-021-09755-3

  84. Augspole I, Duma M, Ozola B, Cinkmanis I (2017) Phenolic profile of fresh and frozen nettle, goutweed, dandelion and chickweed leaves. Latvia University of AgricultureFaculty of Food Technology. 11th Baltic Conference onFood Science and Technology. Latvia. In: FOODBALT, pp 36–39

    Google Scholar 

  85. Arora D, Sharma A (2014) Isolation and characterization of the chemical constituents of stellaria media linn. Int J Pharm Sci Res 5:3669–3673. https://doi.org/10.13040/IJPSR.0975-8232.5(9)

    Article  CAS  Google Scholar 

  86. Vodoslavskyi V (2017) The quantitative content of the phenolic compounds in the Stellaria media herb. Pharma Innov J 6:174–175

    CAS  Google Scholar 

  87. Miere F, Teusdea AC, Laslo V, Fritea L, Moldovan L, Costea T, Uivaroșan D, Vicas SI, Pallag A (2019) Natural Polymeric Beads for Encapsulation of Stellaria media Extract with Antioxidant Properties. Mater Plast 56:671–679. https://doi.org/10.37358/mp.19.4.5252

    Article  Google Scholar 

  88. Moradi M, Niazi A, Mazloomi E, Mousavi SF, Lopez V (2020) Effect of lavender on episiotomy wound healing and pain relief: a systematic review. Evid Based Care J 10:61–69

    Google Scholar 

  89. EMA (2012) Assessment report on Lavandula angustifolia Miller, aetheroleum and Lavandula angustifolia Miller. Comm Herb Med Prod 44:1–46

    Google Scholar 

  90. Prusinowska R, Śmigielski KB (2014) Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. Herba Pol 60:56–66. https://doi.org/10.2478/HEPO-2014-0010

    Article  Google Scholar 

  91. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016:1. https://doi.org/10.1155/2016/7432797

    Article  CAS  Google Scholar 

  92. Dobros N, Zawada KD, Paradowska K (2022) Phytochemical profiling, antioxidant and anti-inflammatory activity of plants belonging to the Lavandula genus. Molecules 28. https://doi.org/10.3390/MOLECULES28010256

  93. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043. https://doi.org/10.1039/B802662A

    Article  CAS  PubMed  Google Scholar 

  94. Francenia Santos-Sánchez N, Salas-Coronado R, Hernández-Carlos B, Villanueva-Cañongo C (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. Plant Physiol Asp Phenolic Compd. https://doi.org/10.5772/INTECHOPEN.83815

  95. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246. https://doi.org/10.3390/NU2121231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Turgut A, Emen F, Canbay H, Demirdogen RE, Cam N, Kiliç D, Yeşilkaynak T (2016) Chemical characterization of Lavandula angustifolia Mill. which is a phytocosmetic species and investigation of its antimicrobial effect in cosmetic products. J Turk Chem Soc 4:283–298. dergipark.org.tr

  97. Bajkacz S, Baranowska I, Buszewski B, Kowalski B, Ligor M (2018) Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS Method. Food Anal Methods 11:3563–3575. https://doi.org/10.1007/S12161-018-1332-9

    Article  Google Scholar 

  98. Mori HM, Kawanami H, Kawahata H, Aoki M (2016) Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement Altern Med 16:1–11. https://doi.org/10.1186/S12906-016-1128-7/FIGURES/6

    Article  Google Scholar 

  99. Xiong Y, Chen L, Man J, Hu Y, Cui X (2019) Chemical and bioactive comparison of Panax notoginseng root and rhizome in raw and steamed forms. J Ginseng Res 43:385–393. https://doi.org/10.1016/j.jgr.2017.11.004

    Article  PubMed  Google Scholar 

  100. Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kang SM (2014) Immunomodulatory activity of red ginseng against influenza a virus infection. Nutrients 6:517–529. https://doi.org/10.3390/nu6020517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park KS, Park DH (2019) The effect of Korean red ginseng on full-thickness skin wound healing in rats. J Ginseng Res 43:226–235. https://doi.org/10.1016/J.JGR.2017.12.006

    Article  PubMed  Google Scholar 

  102. Viji Chandran S, Amritha TS, Rajalekshmi G, Pandimadevi M (2015) A preliminary in vitro study on the bovine collagen film incorporated with azadirachta indica plant extract as a potential wound dressing material. Int J PharmTech Res 8:248–257

    Google Scholar 

  103. Osunwoke EA, Olotu EJ, Allison TA, Onyekwere JC (2013) The wound healing effects of aqueous leave extracts of Azadirachta Indica on Wistar Rats. J Nat Sci Res 3:181–186

    Google Scholar 

  104. Motealleh B, Zahedi P, Rezaeian I, Moghimi M, Abdolghaffari AH, Zarandi MA (2014) Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ε-caprolactone)/polystyrene blends. J Biomed Mater Res – Part B Appl Biomater 102:977–987. https://doi.org/10.1002/jbm.b.33078

    Article  CAS  Google Scholar 

  105. Oryan A, Mohammadalipour A, Moshiri A, Tabandeh MR (2016) Topical application of aloe vera accelerated wound healing, modeling, and remodeling. Ann Plast Surg 77:37–46. https://doi.org/10.1097/SAP.0000000000000239

    Article  CAS  PubMed  Google Scholar 

  106. Hormozi M, Assaei R, Boroujeni MB (2017) The effect of aloe vera on the expression of wound healing factors (TGFβ1 and bFGF) in mouse embryonic fibroblast cell: In vitro study. Biomed Pharmacother 88:610–616. https://doi.org/10.1016/J.BIOPHA.2017.01.095

    Article  CAS  PubMed  Google Scholar 

  107. Wahedi HM, Jeong M, Chae JK, Do SG, Yoon H, Kim SY (2017) Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo. Phytomedicine 28:19–26. https://doi.org/10.1016/J.PHYMED.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  108. Dinda M, Dasgupta U, Singh N, Bhattacharyya D, Karmakar P (2015) PI3K-mediated proliferation of fibroblasts by Calendula officinalis Tincture: implication in wound healing. Phyther Res 29:607–616. https://doi.org/10.1002/PTR.5293

    Article  CAS  Google Scholar 

  109. Dinda M, Mazumdar S, Das S, Ganguly D, Dasgupta UB, Dutta A, Jana K, Karmakar P (2016) The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. Phyther Res 30:1696–1707. https://doi.org/10.1002/PTR.5678

    Article  CAS  Google Scholar 

  110. Babu MK, Prasad OS, Murthy TEGK (2011) Comparison of the dermal wound healing of Centella asiatica extract impregnated collagen and crosslinked collagen scaffolds. J Chem Pharm Res 3:353–362

    Google Scholar 

  111. Sharma A, Khanna S, Kaur G, Singh I (2021) Medicinal plants and their components for wound healing applications. Futur J Pharm Sci 7(1):1–13. https://doi.org/10.1186/S43094-021-00202-W

    Article  Google Scholar 

  112. Müller WE, Singer A, Wonnemann M (2001) Hyperforin – antidepressant activity by a novel mechanism of action. Pharmacopsychiatry 34(Suppl 1). https://doi.org/10.1055/S-2001-15512

  113. Behnke K, Jensen GS, Graubaum HJ, Gruenwald J (2002) Hypericum perforatum versus fluoxetine in the treatment of mild to moderate depression. Adv Ther 19:43–52. https://doi.org/10.1007/BF02850017

    Article  PubMed  Google Scholar 

  114. Bezáková L, Pšenák M, Kartnig T (1999) Effect of dianthrones and their precursors from Hypericum perforatum L. on lipoxygenase activity. Pharmazie 54:711–711

    PubMed  Google Scholar 

  115. Sánchez-Mateo CC, Bonkanka CX, Hernández-Pérez M, Rabanal RM (2006) Evaluation of the analgesic and topical anti-inflammatory effects of Hypericum reflexum L. fil. J Ethnopharmacol 107:1–6. https://doi.org/10.1016/J.JEP.2006.01.032

    Article  PubMed  Google Scholar 

  116. Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH (2021) Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 47:311–350. https://doi.org/10.1002/BIOF.1716

    Article  CAS  PubMed  Google Scholar 

  117. Wang X, Shen K, Wang J, Liu K, Wu G, Li Y, Luo L, Zheng Z, Hu D (2020) Hypoxic preconditioning combined with curcumin promotes cell survival and mitochondrial quality of bone marrow mesenchymal stem cells, and accelerates cutaneous wound healing via PGC-1α/SIRT3/HIF-1α signaling. Free Radic Biol Med 159:164–176. https://doi.org/10.1016/J.FREERADBIOMED.2020.07.023

    Article  CAS  PubMed  Google Scholar 

  118. Pandey VK, Ajmal G, Upadhyay SN, Mishra PK (2020) Nano-fibrous scaffold with curcumin for anti-scar wound healing. Int J Pharm 589:119858. https://doi.org/10.1016/J.IJPHARM.2020.119858

    Article  CAS  PubMed  Google Scholar 

  119. Rathinavel S, Korrapati PS, Kalaiselvi P, Dharmalingam S (2021) Mesoporous silica incorporated PCL/Curcumin nanofiber for wound healing application. Eur J Pharm Sci 167:106021. https://doi.org/10.1016/J.EJPS.2021.106021

    Article  CAS  PubMed  Google Scholar 

  120. Rathinavel S, Indrakumar J, Korrapati PS, Dharmalingam S (2022) Synthesis and fabrication of amine functionalized SBA-15 incorporated PVA/Curcumin nanofiber for skin wound healing application. Colloids Surf A Physicochem Eng Asp 637:128185. https://doi.org/10.1016/J.COLSURFA.2021.128185

    Article  CAS  Google Scholar 

  121. Suryanarayana P, Saraswat M, Mrudula T, Krishna TP, Krishnaswamy K, Reddy GB (2005) Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Investig Ophthalmol Vis Sci 46:2092–2099. https://doi.org/10.1167/iovs.04-1304

    Article  Google Scholar 

  122. Le V, Dolganyuk V, Sukhikh A, Babich O, Sciences SI-A (2021) U (2021) phytochemical analysis of symphytum officinale root culture extract. Appl Sci 11:1–16. https://doi.org/10.3390/app11104478

    Article  CAS  Google Scholar 

  123. Staiger C (2013) Comfrey root: From tradition to modern clinical trials. Wien Med Wochenschr 163:58–64. https://doi.org/10.1007/S10354-012-0162-4/FIGURES/1

    Article  PubMed  Google Scholar 

  124. Segev A, Badani H, Kapulnik Y, Shomer I, Oren-Shamir M, Galili S (2010) Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci 75. https://doi.org/10.1111/J.1750-3841.2009.01477.X

  125. Neagu E, Paun G, Radu GL, Păun G, Radu LG (2011) Phytochemical study of some Symphytum officinalis extracts concentrated by membranous procedures UPB. Sci Bull Ser B Chem Mater Sci 73(3): 66–74

    Google Scholar 

  126. Paun G, Neagu E, Moroeanu V, Ungureanu O, Cretu R, Ionescu E, Elena Tebrencu C, Ionescu R, Stoica I, Radu GL (2017) Phytochemical analysis and in vitro biological activity of Betonica officinalis and Salvia officinalis extracts. Rom Biotechnol Lett 22(4):12751–12761

    Google Scholar 

  127. Cruz I, Cheetham JJ, Arnason JT, Yack JE, Smith ML (2014) Alkamides from Echinacea disrupt the fungal cell wall-membrane complex. Phytomedicine 21:435–442. https://doi.org/10.1016/J.PHYMED.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  128. Shin DM, Choi KM, Lee YS, Kim W, Shin KO, Oh S, Jung JC, Lee MK, Lee YM, Hong JT, Yun YP, Yoo HS (2014) Echinacea purpurea root extract enhances the adipocyte differentiation of 3T3-L1 cells. Arch Pharm Res 37:803–812. https://doi.org/10.1007/S12272-013-0251-Y

    Article  CAS  PubMed  Google Scholar 

  129. Parsons J, Cameron S et al (2018) undefined (2018) Echinacea biotechnology: advances, commercialization and future considerations. Taylor Fr 56:485–494. https://doi.org/10.1080/13880209.2018.1501583

    Article  CAS  Google Scholar 

  130. Zagumennikov VB, Molchanova AV, Babaeva EY, Petrova AL (2015) Accumulation of ascorbic acid in fresh echinacea purpurea plants and their processing products. Pharm Chem J 48:671–674. https://doi.org/10.1007/S11094-015-1168-1

    Article  CAS  Google Scholar 

  131. Barrett B (2003) Medicinal properties of Echinacea: a critical review. Phytomedicine 10:66–86. https://doi.org/10.1078/094471103321648692

    Article  CAS  PubMed  Google Scholar 

  132. Oberbaum M, Galoyan N, Lerner-Geva L, Singer SR, Grisaru S, Shashar D, Samueloff A (2005) The effect of the homeopathic remedies Arnica montana and Bellis perennis on mild postpartum bleeding – a randomized, double-blind, placebo-controlled study – preliminary results. Complement Ther Med 13:87–90. https://doi.org/10.1016/J.CTIM.2005.03.006

    Article  PubMed  Google Scholar 

  133. Smigielski K, Prusinowska R, Raj A, Sikora M, Woliñska K, Gruska R (2013) Effect of drying on the composition of essential oil from Lavandula angustifolia. J Essent Oil Bear Plants 14:532–542. https://doi.org/10.1080/0972060X.2011.10643970

    Article  Google Scholar 

  134. Lawrence B (2015) Progress in essential oils. Perfum Flavorist 40:42–52

    Google Scholar 

  135. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525. https://doi.org/10.1038/SJ.JID.5700701

    Article  CAS  PubMed  Google Scholar 

  136. Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y (2009) Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice. Eur J Pharmacol 602:148–156. https://doi.org/10.1016/J.EJPHAR.2008.11.021

    Article  CAS  PubMed  Google Scholar 

  137. Yu L, Xie J, Xin N, Wang Z (2015) Panax notoginseng saponins promote wound repair of anterior cruciate ligament through phosphorylation of PI3K, AKT and ERK. Int J Clin Exp Pathol 8:449

    Google Scholar 

  138. Kimura Y, Sumiyoshi M, Kawahira K, Sakanaka M (2006) Effects of ginseng saponins isolated from red ginseng roots on burn wound healing in mice. Br J Pharmacol 148:860–870. https://doi.org/10.1038/SJ.BJP.0706794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thakurta P, Bhowmik P, Mukherjee S, Hajra TK, Patra A, Bag PK (2007) Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhea in India. J Ethnopharmacol 111:607–612. https://doi.org/10.1016/J.JEP.2007.01.022

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arinze Favour Anyiam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anyiam, A.F., Obi, E., Arinze-Anyiam, O.C. (2023). Assessment of the Phytochemical Constituents and Metabolites of Some Medicinal Plants and Herbal Remedies Used in the Treatment and Management of Injuries. In: Izah, S.C., Ogwu, M.C., Akram, M. (eds) Herbal Medicine Phytochemistry. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-21973-3_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21973-3_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21973-3

  • Online ISBN: 978-3-031-21973-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics