Skip to main content

Approaches for Sensor Surfaces Modification

  • Living reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

Nanosensors are nanoscale devices that measure physical quantities and turn them into detectable and processed signals. Generally, these nanosensors exhibit variable sensitivity. This sensitivity has a strong relationship with the specificity, price, and longevity of the sensor that it corresponds to. So, for improving the performance of the sensor, surface modification is crucial. Functional surface modification not only improves the sensitivity but also removes the undesired particles ensuring the effective reactivity between the sensor surface and substrate of the specified application area. Currently, nanotubes, nanorods, and nanowire-based nanosensors are extensively used in biomedical, machinery, agricultural, and detection purposes. For boosting their performances, researchers are working on how their surface characteristics can be modified. Based on their noble work in this field, this chapter will be discussed the types of nanosensor surfaces and their application-based modification techniques in detail. Also, current complications regarding this research and their future potentialities will be included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AuNRs:

Gold nanorods

CMEs:

Chemically modified electrodes

CNW:

Carbon nanowall

CTs:

Carbon nanotubes

CVD:

Chemical vapor deposition

ELD:

Electrodeposition or electrochemical deposition

GNWs:

Graphene nanowalls

MONTs:

Metal oxide nanotubes

PDMS:

Polydimethylsiloxane

SAMs:

Self-assembled monolayers

References

  1. Angeles GA, Romero GAA, Merkoci A (2018) Electrochemical biosensors: enzyme kinetics and role of nanomaterials. Encyclopedia of Interfacial Chemistry (Surface Science and Electrochemistry):140–155

    Google Scholar 

  2. Dong S, Peng Z (2005) Sensorsǀchemically modified electrodes. Encyclopedia of Analytical Science: 245–254

    Google Scholar 

  3. Liu Z, Tabakman S, Welsher S, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  CAS  Google Scholar 

  4. Tang R, Shi Y, Hou Z, Wei L (2017) Carbon nanotube-based chemiresistive sensors. Sensors 17:882

    Article  Google Scholar 

  5. Meyyappan M (2016) Carbon nanotube-based chemical sensors. Small 12:2118–2129

    Article  CAS  Google Scholar 

  6. Mirzaei A, Lee JH, Majhi SM (2019) Resistive gas sensors based on metal-oxide nanowires. J Appl Phys 126:241102

    Article  Google Scholar 

  7. Kim WT, Kim IH, Choi WY (2015) Fabrication of TiO2 nanotube arrays and their application to a gas sensor. J Nanosci Nanotechnol 15:8161–8165

    Article  CAS  Google Scholar 

  8. Tiano AL, Park C, Lee JW (2014) Boron nitride nanotube: synthesis and applications. Nanosensors, Biosensors, and Info-Tech Sensors and Systems 9060:906006

    Google Scholar 

  9. Hamzan NB, Bin Ng CY, Sadri R (2021) Controlled physical properties and growth mechanism of manganese silicide nanorods. J Alloys Compd 851:156693

    Article  CAS  Google Scholar 

  10. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  11. Park EU, Choi BI, Kim JC, Woo S-B, Kim Y-G, Choi Y, Lee S-W (2018) Correlation between the sensitivity and the hysteresis of humidity sensors based on graphene oxides. Sensors Actuators B Chem 258:255–262

    Article  CAS  Google Scholar 

  12. Yi GC, Wang C, Park WI (2005) ZnO nanorods: synthesis, characterization and applications. Semicond Sci Technol 20:S22–S34

    Article  CAS  Google Scholar 

  13. Boston R, Schnepp Z, Nemoto Y, Sakka Y, Hall SR (2014) In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344:623–626

    Article  CAS  Google Scholar 

  14. Ambhorkar P, Wang Z, Ko H (2018) Nanowire-based biosensors: from growth to applications. Micromachines 9:1–19

    Article  Google Scholar 

  15. Smith R, Duan W, Quarterman J (2019) Surface modifying doped silicon nanowire based solar cells for applications in biosensing. Adv Mater Technol 4:1–7

    Article  Google Scholar 

  16. Shin SH, Kim GY, Shim J (2012) Use of biologically designed gold nanowire for biosensor application. Korean J Chem Eng 29:1666–1669

    Article  CAS  Google Scholar 

  17. Zhao Y, Yan X, Kang Z (2013) Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta 180:759–766

    Article  CAS  Google Scholar 

  18. Choi H, Kwon S, Lee S (2020) Innovative method using adhesive force for surface micromachining of carbon nanowall. Nano 10:1–11

    Google Scholar 

  19. Aca-López A, Quiroga-González E, Gómez-Barojas E, Światowska J, Luna-López JA (2020) Effects of the doping level in the production of silicon nanowalls by metal assisted chemical etching. Mater Sci Semicond Process 118:105206

    Article  Google Scholar 

  20. Siuzdak K, Ficek M, Sobaszek M (2017) Boron-enhanced growth of micron-scale carbon-based nanowalls: a route toward high rates of electrochemical biosensing. ACS Appl Mater Interfaces 9:12982–12992

    Article  CAS  Google Scholar 

  21. Liu X, Chao D, Su D, Liu S, Chen L, Chi L, Lin J, Shen ZX, Zhao J, Mai L, Li Y (2017) Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 37:108–117

    Article  CAS  Google Scholar 

  22. Tzouvadaki I, Aliakbarinodehi N, Dávila Pineda D, De Micheli G, Carrara S (2018) Graphene nanowalls for high-performance chemotherapeutic drug sensing and anti-fouling properties. Sensors Actuators B Chem 262:395–403

    Article  CAS  Google Scholar 

  23. Yerlanuly Y, Zhumadilov R, Nemkayeva R, Uzakbaiuly B, Beisenbayev AR (2021) Physical properties of carbon nanowalls synthesized by the ICP-PECVD method vs. the growth time. Sci Rep 11:1–12

    Article  Google Scholar 

  24. Carlsson JO, Martin PM (2009) Chemical vapor deposition. In: Handbook of deposition technologies for films and coatings: science, applications and technology, vol 3. Elsevier Ltd, pp 314–363

    Google Scholar 

  25. Benea L (2018) Surface modifications of materials by electrochemical methods to improve the properties for industrial and medical applications. IOP Conf Ser: Mater Sci Eng 374:1–10

    Article  Google Scholar 

  26. Darmanin T, Guittard F (2015) Superhydrophobic and superoleophobic properties in nature. Mater Today 18:273–285

    Article  CAS  Google Scholar 

  27. Liu K, Yao X, Jiang L (2010) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255

    Article  CAS  Google Scholar 

  28. Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37:2512–2529

    Article  CAS  Google Scholar 

  29. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9:750–760

    Article  CAS  Google Scholar 

  30. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  31. Blossey R (2003) Self-cleaning surfaces – virtual realities. Nat Mater 2:301–306

    Article  CAS  Google Scholar 

  32. Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Article  Google Scholar 

  33. Zhao J, Han P, Quan Q (2018) A convenient oil-water separator from polybutylmethacrylate/graphene-deposited polyethylene terephthalate nonwoven fabricated by a facile coating method. Prog Org Coat 115:181–187

    Article  CAS  Google Scholar 

  34. Lee BP, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341

    Article  CAS  Google Scholar 

  35. Sarkar D, Mahapatra A, Som A et al (2018) Patterned nanobrush nature mimics with unprecedented water-harvesting efficiency. Adv Mater Interfaces 5:1–7

    Article  Google Scholar 

  36. Tanaka D, Buenger D, Hildebrandt H, Moeller M, Groll J (2013) Unidirectional control of anisotropic wetting through surface modification of PDMS microstructures. Langmuir 29:12331–12336

    Article  CAS  Google Scholar 

  37. McCloskey BD, Park HB, Ju H, Rowe BW, Miller DJ, Freeman BD (2012) A bioinspired fouling-resistant surface modification for water purification membranes. J Membr Sci 413:82–90

    Article  Google Scholar 

  38. Kumar S, Ye F, Dobretsov S, Dutta J (2021) Nanocoating is a new way for biofouling prevention. Front Nanotechnol 3(November):1–16

    Google Scholar 

  39. Huskić M, Bolka S, Vesel A (2018) One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites. Eur Polym J 101:211–217

    Article  Google Scholar 

  40. Ma L, Dong X, Chen M, Zhu L, Wang C, Yang F, Dong Y (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes 7:16

    Article  Google Scholar 

  41. Ahmadi A, Ramezanzadeh B, Mahdavian M (2016) Hybrid silane coating reinforced with silanized graphene oxide nanosheets with improved corrosion protective performance. RSC Adv 6:54102–54112

    Article  CAS  Google Scholar 

  42. Halakarni M, Mahto A, Aruchamy K, Mondal D, Nataraj SK (2021) Developing helical carbon functionalized chitosan-based loose nanofiltration membranes for selective separation and wastewater treatment. Chem Eng J 417:127911

    Article  CAS  Google Scholar 

  43. Lee D, Yang S (2012) Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors Actuators B Chem 162:425–434

    Article  CAS  Google Scholar 

  44. Erinosho MF, Akinlabi ET, Pityana S, Owolabi G (2017) Laser surface modification of Ti6Al4V-Cu for improved microhardness and wear resistance properties. Mater Res 20:1143–1152

    Article  CAS  Google Scholar 

  45. Hwang GB, Patir A, Page K, Lu Y, Allan E, Parkin IP (2017) Buoyancy increase and drag-reduction through a simple superhydrophobic coating. Nanoscale 9:7588–7594

    Article  CAS  Google Scholar 

  46. Hama AKH, Omer KM, Hamarawf RF (2019) Lowering the detection limit towards nanomolar mercury ion detection: via surface modification of N-doped carbon quantum dots. New J Chem 43:8677–8683

    Article  Google Scholar 

  47. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM (2015) A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst 140:2540–2555

    Article  CAS  Google Scholar 

  48. Singh KRB, Nayak V, Sarkar T, Singh RP (2020) Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 10:27194–27214

    Article  CAS  Google Scholar 

  49. Malik P, Gupta R, Malik V, Ameta RK (2021) Emerging nanomaterials for improved biosensing. Measur: Sensors 16:100050

    Google Scholar 

  50. Dong C, Shi H, Han Y, Yang Y, Wang R, Men J (2021) Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 145:110231

    Article  CAS  Google Scholar 

  51. Koju N, Sikder P, Ren Y, Zhou H, Bhaduri SB (2017) Biomimetic coating technology for orthopedic implants. Curr Opin Chem Eng 15:49–55

    Article  Google Scholar 

  52. Trewyn BG, Giri S, Slowing II, Lin VSY (2007) Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun 31:3236–3245

    Article  Google Scholar 

  53. Cho IH, Lee J, Kim J (2018) Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors (Switzerland) 18:1–18

    Article  Google Scholar 

  54. Asri RIM, Harun WSW, Samykano M (2017) Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C 77:1261–1274

    Article  CAS  Google Scholar 

  55. Junior WN, Naeem M, Costa THC, Iqbal J, Jelani M, Sousa RRM (2021) Surface modification of AISI-304 steel by ZnO synthesis using cathodic cage plasma deposition. Mater Res Express 8:96403

    Article  Google Scholar 

  56. Mousavi SMA, Pitchumani R (2022) Bioinspired nonwetting surfaces for corrosion inhibition over a range of temperature and corrosivity. J Colloid Interface Sci 607:323–333

    Article  CAS  Google Scholar 

  57. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic – inorganic nanocomposites-a review. Prog Polym Sci 38:1232–1261

    Article  CAS  Google Scholar 

  58. Bewilogua K, Hofmann D (2014) History of diamond-like carbon films-from first experiments to worldwide applications. Surface Coatings Technol 242:214–225

    Article  CAS  Google Scholar 

  59. Lubkowski K, Grzmil B (2008) Controlled release fertilizers. Pol J Chem Technol 9:7–10

    Google Scholar 

  60. Velasco EAP, Galindo RB, Aguilar LAV, Fuentes JAG, Puente UBA (2020) Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules 25

    Google Scholar 

  61. Chang L, Xu L, Liu Y, Qiu D (2021) Superabsorbent polymers used for agricultural water retention. Polym Test 94:107021

    Article  CAS  Google Scholar 

  62. Trejo A, Luz E, Hartmann A (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Bot 75:65–73

    Article  Google Scholar 

  63. Neoh KG, Li M, Kang ET, Chiong E, Tambyah PA (2017) Surface modification strategies for combating catheter-related complications: recent advances and challenges. J Mater Chem B 5:2045–2067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Jahidul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kamal, M.M., Haque, M.J. (2024). Approaches for Sensor Surfaces Modification. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-16338-8_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16338-8_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16338-8

  • Online ISBN: 978-3-031-16338-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics