Skip to main content

Consumer Nanoproducts for the Remediation of Environmental Problem

  • Reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology
  • 36 Accesses

Abstract

The problems of our environment such as air pollution, water pollution, and extreme utilization of natural resources are some of the alarming challenges faced by the communities worldwide. Nanotechnology application is getting more attention on environmental fortification and is being applied in the areas of water treatment, wastewater treatment, groundwater remediation, soil remediation, and waste managements. The concerns of nanotechnology dealing with environmental implications and regulatory compliance encompass practicing areas for these technical individuals.

In this chapter, we recapitulate areas of particular concern including current/proposed environmental regulations and procedures for quantifying both health risks and hazard risks, pollutant removal by using different nanomaterials, and application of nanomaterials for addressing environmental problems. It also highlights the challenges and priorities for responsible management of nano-waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Momani F, Smith D, Gamal El-Din M et al (2008) Degradation of cyanobacteria toxin by advanced oxidation processes. J Hazard Mater 150(2):238–249

    Article  Google Scholar 

  • Ali SS (2012) Carboxy fullerenes: nanomolecules that work. J Nanomedine Biotherapeutic Discov 02(02)

    Google Scholar 

  • Allabashi R, Arkas M, Hörmann G, Tsiourvas D et al (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41(2):476–486

    Article  CAS  Google Scholar 

  • Alvarez NR, Lluis XB, Camps A, Aguasca A, Iiossera MV, Valencia E, Ramos-Perez I, Park H (2011) Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the interference pattern GNSS-R technique, in Radio Science, 46(06):1–11

    Google Scholar 

  • Arkas M, Allabashi R, Tsiourvas D, Mattausch E, Perfler R et al (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40(8):2771–2777

    Article  CAS  Google Scholar 

  • Barhate R, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1–2):1–8

    Article  CAS  Google Scholar 

  • Botes M, Eugene Cloete T (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81

    Article  CAS  Google Scholar 

  • Center for Chemical Process Safety of the American Institute of Chemical Engineers (1989) Guidelines for chemical process quantitative risk analysis. AICHE, New York

    Google Scholar 

  • Chae S, Wang S, Hendren Z, Wiesner M, Watanabe Y, Gunsch C et al (2009) Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J Membr Sci 329(1–2):68–74

    Article  CAS  Google Scholar 

  • Chatterjee A, Cannon D, Gatimu E, Sweedler J, Aluru N, Bohn P et al (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7(4–5):507–516

    Article  CAS  Google Scholar 

  • Chaturvedi S, Dave P, Shah N et al (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  CAS  Google Scholar 

  • Chronakis IS, Frenot A (2003) Polymer nanofibers assembled by electrospinning. Science 8(1):64–75

    Google Scholar 

  • Cortalezzi M, Rose J, Wells G, Bottero J, Barron A, Wiesner M et al (2003) Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. J Membr Sci 227(1–2):207–217

    Article  CAS  Google Scholar 

  • Crane R, Scott T (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Fitts J, Boon N, Verstraete W et al (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45(4):1856–1864

    Article  Google Scholar 

  • DeFriend K, Wiesner M, Barron A et al (2003) Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J Membr Sci 224(1–2):11–28

    Article  CAS  Google Scholar 

  • Devipriya S, Yesodharan S, Yesodharan E et al (2020) Solar photocatalytic removal of chemical and bacterial pollutants from water using Pt/Tio2-coated ceramic tiles

    Google Scholar 

  • Dotzauer D, Dai J, Sun L, Bruening M et al (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6(10):2268–2272

    Article  CAS  Google Scholar 

  • Dugan N, Williams D (2006) Cyanobacteria passage through drinking water filters during perturbation episodes as a function of cell morphology, coagulant and initial filter loading rate. Harmful Algae 5(1):26–35

    Article  CAS  Google Scholar 

  • Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya J et al (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41(16):5208–5212

    Article  CAS  Google Scholar 

  • Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  Google Scholar 

  • Fleischer T, Grunwald A (2008) Making nanotechnology developments sustainable. A role for technology assessment? J Clean Prod 16(8–9):889–898

    Article  Google Scholar 

  • Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Hickey R, Meng X, Zhang P, Park S et al (2013) Low-dimensional nanoparticle clustering in polymer micelles and their transverse relaxivity rates. ACS Nano 7(7):5824

    Article  CAS  Google Scholar 

  • Hollman A, Bhattacharyya D (2004) Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation. Langmuir 20(13):5418–5424

    Article  CAS  Google Scholar 

  • Hsiao YY, Pan JZ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH (2011) Research on orchid biology and biotechnology. Plant and Cell Physiology 52(9):1467–86

    Google Scholar 

  • Huang W, Cheng B, Cheng Y et al (2007) Adsorption of microcystin-LR by three types of activated carbon. J Hazard Mater 141(1):115–122

    Article  CAS  Google Scholar 

  • Hutchison J (2016) The road to sustainable nanotechnology: challenges, progress and opportunities. ACS Sustain Chem Eng 4(11):5907–5914

    Article  CAS  Google Scholar 

  • Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M et al (2002) Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92(1):37–42

    Article  CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  CAS  Google Scholar 

  • Kim S, Kwak S, Sohn B, Park T et al (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165

    Article  CAS  Google Scholar 

  • Kim J, Kuk E, Yu K, Kim J, Park S, Lee H, Kim S, Park Y, Park Y, Hwang C, Kim Y, Lee Y, Jeong D, Cho M et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101

    Article  CAS  Google Scholar 

  • Kim J, Davies S, Baumann M, Tarabara V, Masten S et al (2008) Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation–ceramic ultrafiltration system treating natural waters. J Membr Sci 311(1–2):165–172

    Article  CAS  Google Scholar 

  • Kumar V, Nagaraja B, Shashikala V, Padmasri A, Madhavendra S, Raju B, Rao K et al (2020) Highly efficient Ag/C catalyst prepared by electro–chemical deposition method in controlling microorganisms in water

    Google Scholar 

  • Lee S, Kim H, Patel R, Im S, Kim J, Min B et al (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18(7):562–568

    Article  Google Scholar 

  • Leo Stander, Louis Theodore (2008) Environmental Regulatory Calculations Handbook. 2008. Environmental Practice, Wiley Interscience, Hoboken, NJ (11):561

    Google Scholar 

  • Li Q, Mahendra S, Lyon D, Brunet L, Liga M, Li D, Alvarez P et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Li J, Xu Y, Zhu L, Wang J, Du C et al (2009a) Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci 326(2):659–666

    Article  CAS  Google Scholar 

  • Li J, Xu Z, Yang H, Yu L, Liu M et al (2009b) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255(9):4725–4732

    Article  CAS  Google Scholar 

  • Liau S, Read D, Pugh W, Furr J, Russell A et al (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  CAS  Google Scholar 

  • Ma H, Hsiao B, Chu B et al (2011) Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer 52(12):2594–2599

    Article  CAS  Google Scholar 

  • Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum Dot Weathering Results in Microbial Toxicity. Environ Sci Technol 42(24):9424–9430

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A et al (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715

    Article  CAS  Google Scholar 

  • Manzoor U, Islam M, Tabassam L, Rahman S et al (2009) Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method. Phys E 41(9):1669–1672

    Article  CAS  Google Scholar 

  • Maroto MCD, Perez-Coello MS, Esteban J, Sanz J (2006) Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill) from central Spain. J Agric Food Chem 6;54(18):6814–8

    Google Scholar 

  • Mauter M, Wang Y, Okemgbo K, Osuji C, Giannelis E, Elimelech M et al (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl Mater Interfaces 3(8):2861–2868

    Article  CAS  Google Scholar 

  • Moe C, Rheingans R (2006) Global challenges in water, sanitation and health. J Water Health 4(S1):41–58

    Article  CAS  Google Scholar 

  • Morose G (2010) The 5 principles of “design for safer nanotechnology”. J Clean Prod 18(3):285–289

    Article  CAS  Google Scholar 

  • Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma V, Nevěčná T, Zbořil R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  Google Scholar 

  • Pantano P (2007) Nanomaterials for biosensors. Nanotechnologies for the life sciences, Vol 8. Edited by Challa S. S. R. Kumar (Louisiana State University, Baton Rouge). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. xxii + 408 pp. $175.00 ISBN 978-3-527-31388-4. J Am Chem Soc 129(35):10963–10963

    Google Scholar 

  • Pavlicevic J, Spırkova M, Aroguz A, Jovicic M, Kojic D, Govedarica D, Ikonic B (2019) The effect of TiO2 particles on thermal properties of polycarbonatebased polyurethane nanocomposite films. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08750-3

  • Peixoto FJ (2016) Identifying nanotechnological systems of innovation: developing indicators as tools to support nanotechnology innovation policy in Brazil. In: Al-Hakim L, Wu X, Koronois A, Shou Y (eds) Handbook of research on driving competitive advantage through sustainable, lean, and disruptive innovation. IGI, Hershey, p 305

    Chapter  Google Scholar 

  • Pendleton P, Schumann R, Wong S et al (2001) Microcystin-LR adsorption by activated carbon. J Colloid Interface Sci 240(1):1–8

    Article  CAS  Google Scholar 

  • Qu X, Alvarez P, Li Q et al (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Rickerby D, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8(1–2):19–24

    Article  CAS  Google Scholar 

  • Ritchie S, Kissick K, Bachas L, Sikdar S, Parikh C, Bhattacharyya D et al (2001) Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environ Sci Technol 35(15):3252–3258

    Article  CAS  Google Scholar 

  • Riu J, Maroto A, Rius F et al (2006) Nanosensors in environmental analysis. Talanta 69(2):288–301

    Article  CAS  Google Scholar 

  • Rosenthal S (2001) Bar-coding biomolecules with fluorescent nanocrystals. Nat Biotechnol 19(7):621–622

    Article  CAS  Google Scholar 

  • Savage N, Diallo M (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4–5):331–342

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky B, Blough J, Mallouk T et al (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193

    Article  CAS  Google Scholar 

  • Serrano E (2010) Nanotechnology and the environment. Mater Today 13(5):55

    Article  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D et al (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103

    Article  Google Scholar 

  • Son W, Youk J, Lee T, Park W (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  Google Scholar 

  • Srinivasan S, Harrington G, Xagoraraki I, Goel R et al (2008) Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Res 42(13):3393–3404

    Article  CAS  Google Scholar 

  • Taurozzi J, Arul H, Bosak V, Burban A, Voice T, Bruening M, Tarabara V et al (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325(1):58–68

    Article  CAS  Google Scholar 

  • Theodore L, Hoboken J (2006) Nanotechnology: basic calculations for engineers and scientists. Nano Today 1(2):391–428

    Google Scholar 

  • Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67:1149–1158

    Google Scholar 

  • Theron J, Walker J, Cloete T et al (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    Article  CAS  Google Scholar 

  • U.S. National Institutes of Occupational Safety and Health (2009) Current intelligence bulletin 60: interim guidance for medical screening and hazard surveillance for workers potentially exposed to engineered nanoparticles. Centers for Disease Control and Prevention, US Public Health Service, Atlanta

    Google Scholar 

  • Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O et al (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8(1–2):47–59

    Article  CAS  Google Scholar 

  • Vimala K, Samba Sivudu K, Murali Mohan Y, Sreedhar B, Mohana Raju K et al (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym 75(3):463–471

    Article  CAS  Google Scholar 

  • Wang H, Ho L, Lewis D, Brookes J, Newcombe G et al (2007) Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins. Water Res 41(18):4262–4270

    Article  CAS  Google Scholar 

  • Weber W (2002) Distributed optimal technology networks: a concept and strategy for potable water sustainability. Water Sci Technol 46(6–7):241–246

    Article  Google Scholar 

  • Wiesner M, Lowry G, Alvarez P, Dionysiou D, Biswas P et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  Google Scholar 

  • Weinheim (2007) Polymers and Light: Fundamentals and Technical Applications By Wolfram Schnabel (Hahn-Meitner-Institut, Berlin, Germany). Wiley-VCH Verlag GmbH & Co. KGaA. J Am Chem Soc 129(46):14526–14527

    Google Scholar 

  • Wu J, Wang R, Hao L, Yi Y, Zhao M, Wang Z, Lin S et al (2016) Antibacterial activity and stability of the electrospun antibacterial polymer/silver nanoparticle nanohybrid mats. Mater Sci Forum 848:538–542

    Article  Google Scholar 

  • Xiu Z, Ma J, Alvarez P et al (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    Article  CAS  Google Scholar 

  • Xiu Z, Zhang Q, Puppala H, Colvin V, Alvarez P et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  Google Scholar 

  • Xu J, Dozier A, Bhattacharyya D et al (2005) Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7(45):449–467

    Article  CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J et al (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593

    Article  CAS  Google Scholar 

  • Yan H, Gong A, He H, Zhou J, Wei Y, Lv L et al (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62(1):142–148

    Article  CAS  Google Scholar 

  • Zhang B, Dhanasekaran DK, Asmatulu R et al (2011) Environmental Impacts of nanotechnology and its products. In: Proceedings of the 2011 midwest section conference of the American Society for Engineering Education, pp 1–9

    Google Scholar 

  • Zhao G, Stevens S Jr (1998) Journal search results – cite this for me. Biometals 11(1):27–32

    Article  CAS  Google Scholar 

  • Zia S, Amin M, Manzoor U, Bhatti A et al (2013) Ultra-long multicolor belts and unique morphologies of tin-doped zinc oxide nanostructures. Appl Phys A 115(1):275–281

    Article  Google Scholar 

  • Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez P et al (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43(3):715–723

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaneet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, V., Saruchi, Kumar, H., Bhatt, D. (2023). Consumer Nanoproducts for the Remediation of Environmental Problem. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-16101-8_25

Download citation

Publish with us

Policies and ethics