Abstract
This review assembles evidence derived from both epidemiological and laboratory studies that suggest exposure to aluminum salts may be more hazardous than generally recognized. The overview describes how available levels of environmental aluminum may be increasing, and it is submitted that this can have adverse health consequences. High levels of aluminum compounds are already recognized as being neurologically harmful, but there is growing evidence that low levels of aluminum can also have adverse consequences.
The mechanism by which aluminum salts can promote the onset and development of neurodegenerative diseases is likely by way of acceleration of intrinsic undesirable events that are already taking place in the aging brain. The most deleterious of these is the gradual increase of inflammatory events with age that not associated with any exogenous provocative stimuli. The superfluous inflammation is harmful to cerebral function, and its intensity is further augmented in neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Aluminum at low levels, paralleling those found in some residential drinking water supplies, leads to cerebral inflammation in experimental animals. The variable incidence of Alzheimer’s disease and other age-related neurodegenerative in different populations may be in part due to by the extent of aluminum ingestion. The subtle effects of Al may also be a substantial factor in overall incidence of diseases related to neurosenescence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AD:
-
Alzheimer’s disease
- Al:
-
Aluminum
- APP:
-
Amyloid precursor protein
- Aβ:
-
Amyloid peptide β
- CC16:
-
Clara cell protein
- CCL2:
-
Monocyte chemoattractant protein-1
- CRP:
-
C-reactive protein
- EDTA:
-
Ethylene diamine tetraacetic acid
- GFAP:
-
Glial fibrillary acidic protein
- MS:
-
Multiple sclerosis
- NLRP3:
-
Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein
- PD:
-
Parkinson’s disease
- Th1:
-
T helper 1 cells
- Th2:
-
T helper 2 cells
- TNF-α:
-
Tumor necrosis factor α
- UK:
-
United Kingdom
References
Akatsu, H., Hori, A., Yamamoto, T., Yoshida, M., Mimuro, M., Hashizume, Y., Tooyama, I., & Yezdimer, E. M. (2012). Transition metal abnormalities in progressive dementias. Biometals, 25(2), 337–350.
Akiyama, H., Hosokawa, M., Kametani, F., Kondo, H., Chiba, M., Fukushima, M., & Tabira, T. (2012). Long-term oral intake of aluminium or zinc does not accelerate Alzheimer pathology in AβPP and AβPP/tau transgenic mice. Neuropathology, 32(4), 390–397. https://doi.org/10.1111/j.1440-1789.2011.01274.x
Alexandrov, P. N., Zhao, Y., Pogue, A. I., Tarr, M. A., Kruck, T. P., Percy, M. E., Cui, J. G., & Lukiw, W. J. (2005). Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. Journal of Alzheimer’s Disease: JAD, 8(2), 117–215.
Alexandrov, P. N., Kruck, T. P., & Lukiw, W. J. (2015). Nanomolar aluminum induces expression of the inflammatory systemic biomarker C-reactive protein (CRP) in human brain microvessel endothelial cells (hBMECs). Journal of Inorganic Biochemistry, 152, 210–213.
Altmann, P., Al-Salihi, F., Butter, K., Cutler, P., Blair, J., Leeming, R., Cunningham, J., & Marsh, F. (1987). Serum aluminum levels and erythrocyte dihydropteridine reductase activity in patients on hemodialysis. The New England Journal of Medicine, 317(2), 80–84.
Altmann, P., Cunningham, J., Dhanesha, U., Ballard, M., Thompson, J., & Marsh, F. (1999). Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: Retrospective study of the Camelford water incident. BMJ (Clinical Research ed.), 319(7213), 807–811.
Álvarez-Soria, M. J., Hernández-González, A., Carrasco-García de León, S., del Real-Francia, M. Á., Gallardo-Alcañiz, M. J., & López-Gómez, J. L. (2011). Trastornos neurológicos desmielinizantes y vacunación del papilomavirus humano [demyelinating disease and vaccination of the human papillomavirus]. Revista de Neurologia, 52(8), 472–476.
Andrási, E., Páli, N., Molnár, Z., & Kösel, S. (2005). Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. Journal of Alzheimer’s disease: JAD, 7(4), 273–284. https://doi.org/10.3233/jad-2005-7402
Authier, F. J., Cherin, P., Creange, A., Bonnotte, B., Ferrer, X., Abdelmoumni, A., Ranoux, D., Pelletier, J., Figarella-Branger, D., Granel, B., Maisonobe, T., Coquet, M., Degos, J. D., & Gherardi, R. K. (2001). Central nervous system disease in patients with macrophagic myofasciitis. Brain,124(Pt 5), 974–83. https://doi.org/10.1093/brain/124.5.974
Bazzari, F. H., Abdallah, D. M., & El-Abhar, H. S. (2019). Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer’s disease neurotoxicity and cognitive deterioration via enhanced insulin Signaling in rats. Molecules (Basel, Switzerland), 24(10), 1992.
Bhattacharjee, S., Zhao, Y., Hill, J. M., Culicchia, F., Kruck, T. P., Percy, M. E., Pogue, A. I., Walton, J. R., & Lukiw, W. J. (2013). Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD). Journal of Inorganic Biochemistry, 126, 35–37.
Bjertness, E., Candy, J. M., Torvik, A., Ince, P., McArthur, F., Taylor, G. A., Johansen, S. W., Alexander, J., Grønnesby, J. K., Bakketeig, L. S., & Edwardson, J. A. (1996). Content of brain aluminum is not elevated in Alzheimer disease. Alzheimer Disease and Associated Disorders, 10(3), 171–174.
Blasco, M. P., Chauhan, A., Honarpisheh, P., Ahnstedt, H., d’Aigle, J., Ganesan, A., Ayyaswamy, S., Blixt, F., Venable, S., Major, A., Durgan, D., Haag, A., Kofler, J., Bryan, R., McCullough, L. D., & Ganesh, B. P. (2020). Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. Journal of Neuroinflammation, 17(1), 160.
Bolognin, S., Messori, L., Drago, D., Gabbiani, C., Cendron, L., & Zatta, P. (2011). Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity. The International Journal of Biochemistry & Cell Biology, 43(6), 877–885. https://doi.org/10.1016/j.biocel.2011.02.009
Bondy, S. C. (2009). Aluminum. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 1, pp. 253–257). Academic.
Bondy, S. C. (2020). Aspects of the immune system that impact brain function. Journal of Neuroimmunology, 340, 577167.
Bondy, S. C., & Truong, A. (1999). Potentiation of beta-folding of beta-amyloid peptide 25-35 by aluminum salts. Neuroscience Letters, 267(1), 25–28.
Bondy, S. C., Guo-Ross, S. X., & Pien, J. (1998). Mechanisms underlying the aluminum-induced potentiation of the pro-oxidant properties of transition metals. Neurotoxicology, 19(1), 65–71.
Bortolotti, P., Faure, E., & Kipnis, E. (2018). Inflammasomes in tissue damages and immune disorders after trauma. Frontiers in Immunology, 9, 1900. https://doi.org/10.3389/fimmu.2018.01900
Bouras, C., Giannakopoulos, P., Good, P. F., Hsu, A., Hof, P. R., & Perl, D. P. (1997). A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: Comparison with Alzheimer’s disease. European Neurology, 38(1), 53–58.
Browne, T. J., Idoine, N.E., Raycraft, E. R., Shaw, R. A., Deady, E. J., Rippingale, J., Bide, T., Wrighton, T. E., & Rodley, J. (2014). World mineral production: 2008–2012. British Geological Survey, ISBN 978-0-85272-766-9.
Campbell, A., Becaria, A., Lahiri, D. K., Sharman, K., & Bondy, S. C. (2004). Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. Journal of Neuroscience Research, 75(4), 565–572.
Carboni, E., & Lingor, P. (2015). Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics, 7(3), 395–404. https://doi.org/10.1039/c4mt00339j
Chamoli, M., Chinta, S. J., & Andersen, J. K. (2018). An inducible MAO-B mouse model of Parkinson’s disease: A tool towards better understanding basic disease mechanisms and developing novel therapeutics. Journal of Neural Transmission (Vienna, Austria: 1996), 125(11), 1651–1658.
Chuchu, N., Patel, B., Sebastian, B., & Exley, C. (2013). The aluminium content of infant formulas remains too high. BMC Pediatrics, 13, 162.
Couette, M., Boisse, M. F., Maison, P., Brugieres, P., Cesaro, P., Chevalier, X., Gherardi, R. K., Bachoud-Levi, A. C., & Authier, F. J. (2009). Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. Journal of Inorganic Biochemistry, 103(11), 1571–1578.
Crépeaux, G., Eidi, H., David, M. O., Baba-Amer, Y., Tzavara, E., Giros, B., Authier, F. J., Exley, C., Shaw, C. A., Cadusseau, J., & Gherardi, R. K. (2017). Non-linear dose-response of aluminium hydroxide adjuvant particles: Selective low dose neurotoxicity. Toxicology, 375, 48–57.
Drüeke, T. B. (2002). Intestinal absorption of aluminium in renal failure. Nephrology, Dialysis, Transplantation, 17(Suppl 2), 13–16.
Eidelberg, D., Sotrel, A., Joachim, C., Selkoe, D., Forman, A., Pendlebury, W. W., & Perl, D. P. (1987). Adult onset Hallervorden-Spatz disease with neurofibrillary pathology. A discrete clinicopathological entity. Brain: A Journal of Neurology, 110(Pt 4), 993–1013.
Exley, C., Mamutse, G., Korchazhkina, O., Pye, E., Strekopytov, S., Polwart, A., & Hawkins, C. (2006). Elevated urinary excretion of aluminium and iron in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 12(5), 533–540.
Fimreite, N., Hansen, O. O., & Pettersen, H. C. (1997). Aluminum concentrations in selected foods prepared in aluminum cookware, and its implications for human health. Bulletin of Environmental Contamination and Toxicology, 58(1), 1–7.
Foglio, E., Buffoli, B., Exley, C., Rezzani, R., & Rodella, L. F. (2012). Regular consumption of a silicic acid-rich water prevents aluminium-induced alterations of nitrergic neurons in mouse brain: Histochemical and immunohistochemical studies. Histology and Histopathology, 27(8), 1055–1066.
Fulgenzi, A., Vietti, D., & Ferrero, M. E. (2014). Aluminium involvement in neurotoxicity. BioMed Research International, 2014, 758323.
Fulgenzi, A., De Giuseppe, R., Bamonti, F., Vietti, D., & Ferrero, M. E. (2015). Efficacy of chelation therapy to remove aluminium intoxication. Journal of Inorganic Biochemistry, 152, 214–218.
Gherardi, R. K., Aouizerate, J., Cadusseau, J., Yara, S., & Authier, F. J. (2016). Aluminum adjuvants of vaccines injected into the muscle: Normal fate, pathology and associated disease. Morphologie, 100(329), 85–94.
Gherardi, R. K., Crépeaux, G., & Authier, F. J. (2019). Myalgia and chronic fatigue syndrome following immunization: Macrophagic myofasciitis and animal studies support linkage to aluminum adjuvant persistency and diffusion in the immune system. Autoimmunity Reviews, 18(7), 691–705.
Gillette Guyonnet, S., Andrieu, S., & Vellas, B. (2007). The potential influence of silica present in drinking water on Alzheimer’s disease and associated disorders. The Journal of Nutrition, Health & Aging, 11(2), 119–124.
Giorgianni, C. M., D’Arrigo, G., Brecciaroli, R., Abbate, A., Spatari, G., Tringali, M. A., Gangemi, S., & De Luca, A. (2014). Neurocognitive effects in welders exposed to aluminium. Toxicology and Industrial Health, 30(4), 347–356.
Guerriero, F., Sgarlata, C., Francis, M., Maurizi, N., Faragli, A., Perna, S., Rondanelli, M., Rollone, M., & Ricevuti, G. (2017). Neuroinflammation, immune system and Alzheimer disease: Searching for the missing link. Aging Clinical and Experimental Research, 29(5), 821–831.
Guo, T., Zhang, D., Zeng, Y., Huang, T. Y., Xu, H., & Zhao, Y. (2020). Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Molecular Neurodegeneration, 15(1), 40.
Halatek, T., Sinczuk-Walczak, H., & Rydzynski, K. (2008). Early neurotoxic effects of inhalation exposure to aluminum and/or manganese assessed by serum levels of phospholipid-binding Clara cells protein. Journal of Environmental Science and Health. Part A, 43(2), 118–124.
Harris, W. R., Wang, Z., & Hamada, Y. Z. (2003). Competition between transferrin and the serum ligands citrate and phosphate for the binding of aluminum. Inorganic Chemistry, 42(10), 3262–3273. https://doi.org/10.1021/ic026027w
He, P., Zou, Y., & Hu, Z. (2015). Advances in aluminum hydroxide-based adjuvant research and its mechanism. Human Vaccines & Immunotherapeutics, 11(2), 477–488.
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., Fitzgerald, K. A., & Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9(8), 847–856.
House, E., Esiri, M., Forster, G., Ince, P. G., & Exley, C. (2012). Aluminium, iron and copper in human brain tissues donated to the Medical Research Council’s cognitive function and ageing study. Metallomics, 4(1), 56–65.
Huat, T. J., Camats-Perna, J., Newcombe, E. A., Valmas, N., Kitazawa, M., & Medeiros, R. (2019). Metal toxicity links to Alzheimer’s disease and Neuroinflammation. Journal of Molecular Biology, 431(9), 1843–1868.
Jahns, R. J., & Kudo, A. M. (2020). Igneous rock. Encyclopædia Britannica. https://www.britannica.com/science/igneous-rock
Kawahara, M., & Kato-Negishi, M. (2011). Link between Aluminum and the pathogenesis of Alzheimer’s disease: The integration of the Aluminum and amyloid Cascade hypotheses. International Journal of Alzheimer’s Disease, 2011, 276393.
Kennedy, M. C. (1956). Aluminium powder inhalations in the treatment of silicosis of pottery workers and pneumoconiosis of coal-miners. British Journal of Industrial Medicine, 13(2), 85–101. https://doi.org/10.1136/oem.13.2.85
Khan, Z., Combadière, C., Authier, F. J., Itier, V., Lux, F., Exley, C., Mahrouf-Yorgov, M., Decrouy, X., Moretto, P., Tillement, O., Gherardi, R. K., & Cadusseau, J. (2013). Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Medicine, 11, 99.
Kiesswetter, E., Schäper, M., Buchta, M., Schaller, K. H., Rossbach, B., Kraus, T., & Letzel, S. (2009). Longitudinal study on potential neurotoxic effects of aluminium: II. Assessment of exposure and neurobehavioral performance of Al welders in the automobile industry over 4 years. International Archives of Occupational and Environmental Health, 82(10), 1191–1210.
Kwon, J. T., Seo, G. B., Jo, E., Lee, M., Kim, H. M., Shim, I., Lee, B. W., Yoon, B. I., Kim, P., & Choi, K. (2013). Aluminum nanoparticles induce ERK and p38MAPK activation in rat brain. Toxicological Research, 29(3), 181–185.
Lai, K., Liu, C. S., Rau, A., Lanctôt, K. L., Köhler, C. A., Pakosh, M., Carvalho, A. F., & Herrmann, N. (2017). Peripheral inflammatory markers in Alzheimer’s disease: A systematic review and meta-analysis of 175 studies. Journal of Neurology, Neurosurgery, and Psychiatry, 88(10), 876–882.
Lecours, C., Bordeleau, M., Cantin, L., Parent, M., Paolo, T. D., & Tremblay, M. È. (2018). Microglial implication in Parkinson’s disease: Loss of beneficial physiological roles or gain of inflammatory functions? Frontiers in Cellular Neuroscience, 12, 282.
Lee, Y., Kim, M. S., & Lee, J. (2017). Neuroprotective strategies to prevent and treat Parkinson’s disease based on its pathophysiological mechanism. Archives of Pharmacal Research, 40(10), 1117–1128.
Li, H., Campbell, A., Ali, S. F., Cong, P., & Bondy, S. C. (2007). Chronic exposure to low levels of aluminum alters cerebral cell signaling in response to acute MPTP administration. Toxicology and Industrial Health, 23(9), 515–524. https://doi.org/10.1177/0748233708089027
Li, X. B., Zheng, H., Zhang, Z. R., Li, M., Huang, Z. Y., Schluesener, H. J., Li, Y. Y., & Xu, S. Q. (2009). Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine: Nanotechnology, Biology, and Medicine, 5(4), 473–479.
Marichal, T., Ohata, K., Bedoret, D., Mesnil, C., Sabatel, C., Kobiyama, K., Lekeux, P., Coban, C., Akira, S., Ishii, K. J., Bureau, F., & Desmet, C. J. (2011). DNA released from dying host cells mediates aluminum adjuvant activity. Nature Medicine, 17(8), 996–1002.
Mattson, M. P., & Arumugam, T. V. (2018). Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metabolism, 27(6), 1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011
Meyer-Baron, M., Schäper, M., Knapp, G., & van Thriel, C. (2007). Occupational aluminum exposure: Evidence in support of its neurobehavioral impact. Neurotoxicology, 28(6), 1068–1078.
Mold, M., Cottle, J., & Exley, C. (2019a). Aluminium in brain tissue in epilepsy: A case report from Camelford. International Journal of Environmental Research and Public Health, 16(12), 2129.
Mold, M., Cottle, J., King, A., & Exley, C. (2019b). Intracellular aluminium in inflammatory and glial cells in cerebral amyloid Angiopathy: A case report. International Journal of Environmental Research and Public Health, 16(8), 1459.
Müller, L., Di Benedetto, S., & Pawelec, G. (2019). The immune system and its dysregulation with aging. Sub-Cellular Biochemistry, 91, 21–43.
Napierska, D., Rabolli, V., Thomassen, L. C., Dinsdale, D., Princen, C., Gonzalez, L., Poels, K. L., Kirsch-Volders, M., Lison, D., Martens, J. A., & Hoet, P. H. (2012). Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chemical Research in Toxicology, 25(4), 828–837.
Needleman, H. L. (2008). The case of Deborah Rice: Who is the Environmental Protection Agency protecting? PLoS Biology, 6(5), e129.
Nies, I., Hidalgo, K., Bondy, S. C., & Campbell, A. (2020). Distinctive cellular response to aluminum based adjuvants. Environmental Toxicology and Pharmacology, 78, 103404.
Oyanagi, K., Kawakami, E., Kikuchi-Horie, K., Ohara, K., Ogata, K., Takahama, S., Wada, M., Kihira, T., & Yasui, M. (2006). Magnesium deficiency over generations in rats with special references to the pathogenesis of the Parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Neuropathology, 26(2), 115–128.
Pennington, J. A. T., & Jones, J. W. (1989). Dietary intake of aluminum. In H. J. Gitelman (Ed.), Aluminum and health: A critical review (pp. 67–100). Marcel and Dekker.
Perl, D. P., & Brody, A. R. (1980). Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science (New York, N.Y.), 208(4441), 297–299.
Peters, S., Reid, A., Fritschi, L., de Klerk, N., & Musk, A.W. (2013). Long-term effects of aluminium dust inhalation. Occupational & Environmental Medicine, 70(12), 864–868. https://doi.org/10.1136/oemed-2013-101487
Phelps, K. R., Naylor, K., Brien, T. P., Wilbur, H., & Haqqie, S. S. (1999). Encephalopathy after bladder irrigation with alum: Case report and literature review. The American Journal of the Medical Sciences, 318(3), 181–185.
Pogue, A. I., & Lukiw, W. J. (2016). Aluminum, the genetic apparatus of the human CNS and Alzheimer’s disease (AD). Morphologie, 100(329), 56–64.
Praticò, D., Uryu, K., Sung, S., Tang, S., Trojanowski, J. Q., & Lee, V. M. (2002). Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB Journal, 16(9), 1138–1140.
Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., Knapp, D. J., & Crews, F. T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453–462.
Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating Aluminum toxicity in plants on acidic soils: Current status and opportunities. International Journal of Molecular Sciences, 19(10), 3073.
Redgrove, J., Rodriguez, I., Mahadevan-Bava, S., & Exley, C. (2019). Prescription infant formulas are contaminated with aluminium. International Journal of Environmental Research and Public Health, 16(5), 899.
Reed, S. G., Orr, M. T., & Fox, C. B. (2013). Key roles of adjuvants in modern vaccines. Nature Medicine, 19(12), 1597–1608.
Reusche, E., Pilz, P., Oberascher, G., Lindner, B., Egensperger, R., Gloeckner, K., Trinka, E., & Iglseder, B. (2001). Subacute fatal aluminum encephalopathy after reconstructive otoneurosurgery: A case report. Human Pathology, 32(10), 1136–1140.
Ribes, D., Torrente, M., Vicens, P., Colomina, M. T., Gómez, M., & Domingo, J. L. (2012). Recognition memory and β-amyloid plaques in adult Tg2576 mice are not modified after oral exposure to aluminum. Alzheimer Disease and Associated Disorders, 26(2), 179–185.
Rifat, S. L., Eastwood, M. R., McLachlan, D. R., & Corey, P. N. (1990). Effect of exposure of miners to aluminium powder. Lancet (London, England), 336(8724), 1162–1165.
Riihimäki, V., & Aitio, A. (2012). Occupational exposure to aluminum and its biomonitoring in perspective. Critical Reviews in Toxicology, 42(10), 827–853.
Rondeau, V., Jacqmin-Gadda, H., Commenges, D., Helmer, C., & Dartigues, J. F. (2009). Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: Findings from 15-year follow-up of the PAQUID cohort. American Journal of Epidemiology, 169(4), 489–496.
Ruipérez, F., Mujika, J. I., Ugalde, J. M., Exley, C., & Lopez, X. (2012). Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe(III) to Fe(II). Journal of Inorganic Biochemistry, 117, 118–123.
Russo, L. S., Beale, G., Sandroni, S., & Ballinger, W. E. (1992). Aluminium intoxication in undialysed adults with chronic renal failure. Journal of Neurology, Neurosurgery, and Psychiatry, 55(8), 697–700.
Ruwona, T. B., Xu, H., Li, X., Taylor, A. N., Shi, Y. C., & Cui, Z. (2016). Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles. Vaccine, 34(27), 3059–3067.
Santibáñez, M., Bolumar, F., & García, A. M. (2007). Occupational risk factors in Alzheimer’s disease: A review assessing the quality of published epidemiological studies. Occupational and Environmental Medicine, 64(11), 723–732.
Santore, R. C., Ryan, A. C., Kroglund, F., Rodriguez, P. H., Stubblefield, W. A., Cardwell, A. S., Adams, W. J., & Nordheim, E. (2018). Development and application of a biotic ligand model for predicting the chronic toxicity of dissolved and precipitated aluminum to aquatic organisms. Environmental Toxicology and Chemistry, 37(1), 70–79.
Seidowsky, A., Dupuis, E., Drueke, T., Dard, S., Massy, Z. A., & Canaud, B. (2018). Intoxication aluminique en hémodialyse chronique. Un diagnostic rarement évoqué de nos jours. Illustration par un cas clinique et revue de la littérature [Aluminic intoxication in chronic hemodialysis. A diagnosis rarely evoked nowadays. Clinical case and review of the literature]. Nephrologie & Therapeutique, 14(1), 35–41. In French.
Shah, S. A., Yoon, G. H., Ahmad, A., Ullah, F., Ul Amin, F., & Kim, M. O. (2015). Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice. Nanoscale, 7(37), 15225–15237.
Shaw, C. A., Li, Y., & Tomljenovic, L. (2013). Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes. Journal of Inorganic Biochemistry, 128, 237–244.
Sherrard, D. J., Walker, J. V., & Boykin, J. L. (1988). Precipitation of dialysis dementia by deferoxamine treatment of aluminum-related bone disease. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 12(2), 126–130.
Shin, R. W., Kruck, T. P., Murayama, H., & Kitamoto, T. (2003). A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer’s disease. Brain Research, 961(1), 139–146.
Shirabe, T., Irie, K., & Uchida, M. (2002). Autopsy case of aluminum encephalopathy. Neuropathology, 22(3), 206–210.
Shoenfeld, Y., & Agmon-Levin, N. (2011). ‘ASIA’ - autoimmune/inflammatory syndrome induced by adjuvants. Journal of Autoimmunity, 36(1), 4–8.
Taiwo, O., & Storey-Laubach, B. (2012). Aluminum. In E. Bingham & B. Cohrrsen (Eds.), Patty’s toxicology (Vol. 1, pp. 229–256). Wiley.
Udeochu, J. C., Shea, J. M., & Villeda, S. A. (2016). Microglia communication: Parallels between aging and Alzheimer’s disease. Clinical & Experimental Neuroimmunology, 7(2), 114–125.
Walton, J. R. (2012). Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides an explanation of Alzheimer’s disease, tests for susceptibility and avenues for treatment. International Journal of Alzheimer’s Disease, 2012, 914947.
Walton, J. R. (2014). Chronic aluminum intake causes Alzheimer’s disease: Applying sir Austin Bradford Hill’s causality criteria. Journal of Alzheimer’s Disease: JAD, 40(4), 765–838.
Wang, L., Hu, J., Zhao, Y., Lu, X., Zhang, Q., & Niu, Q. (2014). Effects of aluminium on β-amyloid (1-42) and secretases (APP-cleaving enzymes) in rat brain. Neurochemical Research, 39(7), 1338–1345.
Wang, Z., Wei, X., Yang, J., Suo, J., Chen, J., Liu, X., & Zhao, X. (2016). Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis. Neuroscience Letters, 610, 200–206.
Willhite, C. C., Karyakina, N. A., Yokel, R. A., Yenugadhati, N., Wisniewski, T. M., Arnold, I. M., Momoli, F., & Krewski, D. (2014). Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Critical Reviews in Toxicology, 44(Suppl 4), 1–80. https://doi.org/10.3109/10408444.2014.934439
Yokel, R. A., Rhineheimer, S. S., Sharma, P., Elmore, D., & McNamara, P. J. (2001). Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single (26)Al exposure. Toxicological Sciences, 64(1), 77–82.
Yumoto, S., Kakimi, S., & Ishikawa, A. (2018). Colocalization of Aluminum and Iron in nuclei of nerve cells in brains of patients with Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 65(4), 1267–1281.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this entry
Cite this entry
Bondy, S.C., Campbell, A. (2022). Aluminum and Neurodegenerative Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_231
Download citation
DOI: https://doi.org/10.1007/978-3-031-15080-7_231
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15079-1
Online ISBN: 978-3-031-15080-7
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences