Skip to main content

Biodegradation of Industrial Materials

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Contaminations resulting from various human activities such as the petroleum industry, petrochemical sector, agriculture sector, and nuclear technology have become major problems nowadays. Also, the industrial wastes produced for industrial purposes attain significant environmental attention. All of these wastes are primarily organic or inorganic components of nature. These wastes are very acidic, a substantial threat to health issues and ecological balance. Due to the lack of facilities for proper biodegradation, the toxic wastes are randomly exposed to the natural environment. These materials are accumulated within the frame of global sustainability and ecological balance maintenance to enhance biodegradability. Three stages usually conduct biodegradation: biodeterioration, fragmentation, and assimilation, with the effective presence of abiotic factors. This chapter presents a general overview of the biodegradation of industrial materials such as plastics, nanocomposite materials, azo textile dye, etc., and their utility based on advantages and disadvantages. It includes an outline of the necessity of biodegradation associated with its impact on the environment and several processes widely used in biodegradation systems. In addition, the requirements of materials to be biodegradable and the factors that affect the biodegradation system most will be discussed. For all sorts of experiments, potentiality matters most, and an overview related to the potentiality of biodegradable industrial materials will be given. Furthermore, the prospects of biodegradable materials will be outlined in this chapter following its current scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Eh:

Electron density

GHG:

Greenhouse gas

LC :

Lignocellulosic fibers

PET:

Polyethylene terephthalate

PHA:

Polyhydroxyalkanoates

WRF:

White-rot fungi

References

  1. Joutey NT, Bahafid W, Sayel H, and El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of science 1:289–320

    Google Scholar 

  2. Karthika M, Shaji N, Johnson A, Neelakandan MS, A. Gopakumar D, and Thomas S (2019) Biodegradation of green polymeric composites materials. Bio Monomers for Green Polymeric Composite Materials:141–159

    Google Scholar 

  3. Folino A, Karageorgiou A, Calabrò PS, and Komilis D (2020) Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 12(15):6030

    Article  CAS  Google Scholar 

  4. Mathews SL, Pawlak J, and Grunden AM (2015) Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied microbiology and biotechnology 99(7):2939–2954

    Article  CAS  Google Scholar 

  5. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  6. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805–821.

    Chapter  Google Scholar 

  7. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701–727.

    Chapter  Google Scholar 

  8. Ali GAM (2020) Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor. Journal of Electronic Materials 49:5411–5421

    Article  CAS  Google Scholar 

  9. Makhlouf ASH and aLI GAM, Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. 2021, Springer: Springer.

    Google Scholar 

  10. Ali GAM and Makhlouf ASH, Fundamentals of Waste Recycling for Nanomaterial Manufacturing, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 3–24.

    Google Scholar 

  11. Nada AA, Soliman FS, Ali GAM, Hamdy A, Selim H, Elsayed MA, Elmowafy ME, and El-Maghrabi HH, Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 729–751.

    Chapter  Google Scholar 

  12. Schwibbert K, Menzel F, Epperlein N, Bonse J, and Krüger J (2019) Bacterial adhesion on femtosecond laser-modified polyethylene. Materials 12(19):3107

    Article  CAS  Google Scholar 

  13. Eskander S and Saleh H (2017) Biodegradation: process mechanism. Environ. Sci. & Eng 8(8):1–31

    Google Scholar 

  14. ZEKRI AY and Chaalal O (2005) Effect of temperature on biodegradation of crude oil. Energy Sources 27(1–2):233–244

    Google Scholar 

  15. Manzano MA, Perales JA, Sales D, and Quiroga JM (1999) The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water. Water Research 33(11):2593–2600

    Article  CAS  Google Scholar 

  16. Lotto N, Calil M, Guedes C, and Rosa D (2004) The effect of temperature on the biodegradation test. Materials Science and Engineering: C 24(5):659–662

    Article  Google Scholar 

  17. Chu C (1982) A comparison of the effect of pH on the biodegradation of two synthetic absorbable sutures. Annals of surgery 195(1):55

    Article  CAS  Google Scholar 

  18. Kulkarni M and Chaudhari A (2006) Biodegradation of p-nitrophenol by P. putida. Bioresource Technology 97(8):982–988

    Article  CAS  Google Scholar 

  19. Sharma P, Singh L, and Dilbaghi N (2009) Biodegradation of Orange II dye by Phanerochaete chrysosporium in simulated wastewater.

    Google Scholar 

  20. Kauselya K, Narendiran R, and Ravi R (2015) Effect of pH and inoculums size on benzene biodegradation using mixed culture. Journal of Advanced chemical sciences:20–21

    Google Scholar 

  21. Li R, Dörfler U, Schroll R, and Munch JC (2016) Biodegradation of isoproturon in agricultural soils with contrasting pH by exogenous soil microbial communities. Soil Biology and Biochemistry 103:149–159

    Article  CAS  Google Scholar 

  22. Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y, Yu J, Yi H, Ye S, and Deng R (2018) Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Science of the total environment 610:1154–1163

    Article  Google Scholar 

  23. Wick LY, Pasche N, Bernasconi SM, Pelz O, and Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Applied and Environmental Microbiology 69(10):6133–6142

    Article  CAS  Google Scholar 

  24. Zhang M, Shen X, Zhang H, Cai F, Chen W, Gao Q, Ortega-Calvo JJ, Tao S, and Wang X (2016) Bioavailability of phenanthrene and nitrobenzene sorbed on carbonaceous materials. Carbon 110:404–413

    Article  CAS  Google Scholar 

  25. Zhang Y, Wang F, Zhu X, Zeng J, Zhao Q, and Jiang X (2015) Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation. Bioresource technology 193:274–280

    Article  CAS  Google Scholar 

  26. Zhao G, Huang Q, Rong X, Cai P, Liang W, and Dai K (2014) Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation. Biodegradation 25(1):1–9

    Article  Google Scholar 

  27. Zhu B, Wu S, Xia X, Lu X, Zhang X, Xia N, and Liu T (2016) Effects of carbonaceous materials on microbial bioavailability of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) in sediments. Journal of hazardous materials 312:216–223

    Article  CAS  Google Scholar 

  28. Iram D, Riaz R, and Iqbal RK (2019) Usage of potential micro-organisms for degradation of plastics. Open Journal of Environmental Biology 4(1):007–015

    Google Scholar 

  29. Gu J-D (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International biodeterioration & biodegradation 52(2):69–91

    Article  CAS  Google Scholar 

  30. Anjana K, Hinduja M, Sujitha K, and Dharani G (2020) Review on plastic wastes in marine environment–Biodegradation and biotechnological solutions. Marine Pollution Bulletin 150:110733

    Article  Google Scholar 

  31. Jenkins S, Quer AMi, Fonseca C, and Varrone C (2019) Microbial degradation of plastics: new plastic degraders, mixed cultures and engineering strategies. Soil Microenvironment for Bioremediation and Polymer Production:213–238

    Google Scholar 

  32. Restrepo-Flórez J-M, Bassi A, and Thompson MR (2014) Microbial degradation and deterioration of polyethylene–A review. International Biodeterioration & Biodegradation 88:83–90

    Article  Google Scholar 

  33. Pathak VM (2017) Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing 4(1):1–31

    Article  Google Scholar 

  34. Gravouil K, Ferru-Clément R, Colas S, Helye R, Kadri L, Bourdeau L, Moumen B, Mercier A, and Ferreira T (2017) Transcriptomics and lipidomics of the environmental strain Rhodococcus ruber point out consumption pathways and potential metabolic bottlenecks for polyethylene degradation. Environmental science & technology 51(9):5172–5181

    Article  CAS  Google Scholar 

  35. Sen SK and Raut S (2015) Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering 3(1):462–473

    Article  Google Scholar 

  36. Shahnawaz M, Sangale MK, and Ade AB, Analysis of the Plastic Degradation Products, in Bioremediation Technology for Plastic Waste. 2019, Springer. p. 93–101.

    Chapter  Google Scholar 

  37. Durairaj P, Hur J-S, and Yun H (2016) Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microbial cell factories 15(1):1–16

    Article  Google Scholar 

  38. Yang Y, Wang J, and Xia M (2020) Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the total environment 708:135233

    Article  CAS  Google Scholar 

  39. Wilkes RA and Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of applied microbiology 123(3):582–593

    Article  CAS  Google Scholar 

  40. Fernandes M, Salvador A, Alves MM, and Vicente AA (2020) Factors affecting polyhydroxyalkanoates biodegradation in soil. Polymer Degradation and Stability 182:109408

    Article  CAS  Google Scholar 

  41. Adhikari D, Mukai M, Kubota K, Kai T, Kaneko N, Araki KS, and Kubo M (2016) Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment 5(01):23

    Article  CAS  Google Scholar 

  42. Arcos-Hernandez MV, Laycock B, Pratt S, Donose BC, Nikolić MA, Luckman P, Werker A, and Lant PA (2012) Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polymer degradation and stability 97(11):2301–2312

    Article  CAS  Google Scholar 

  43. Thellen C, Coyne M, Froio D, Auerbach M, Wirsen C, and Ratto JA (2008) A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films. Journal of Polymers and the Environment 16(1):1–11

    Article  CAS  Google Scholar 

  44. Arrieta MP, López J, Rayón E, and Jiménez A (2014) Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability 108:307–318

    Article  CAS  Google Scholar 

  45. Emadian SM, Onay TT, and Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste management 59:526–536

    Article  CAS  Google Scholar 

  46. Amobonye A, Bhagwat P, Singh S, and Pillai S (2021) Plastic biodegradation: Frontline microbes and their enzymes. Science of The Total Environment 759:143536

    Article  CAS  Google Scholar 

  47. Zhong Y, Godwin P, Jin Y, and Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research 3(1):27–35

    Article  Google Scholar 

  48. Li M, Pu Y, Chen F, and Ragauskas AJ (2021) Synthesis and Characterization of Lignin-grafted-poly (ε-caprolactone) from Different Biomass Sources. New Biotechnology 60:189–199

    Article  CAS  Google Scholar 

  49. Greene JP (2019) Degradation and Biodegradation Standards for Biodegradable Food Packaging Materials.

    Book  Google Scholar 

  50. Ashok A, Abhijith R, and Rejeesh C (2018) Material characterization of starch derived bio degradable plastics and its mechanical property estimation. Materials Today: Proceedings 5(1):2163–2170

    CAS  Google Scholar 

  51. Ajaz M, Shakeel S, and Rehman A (2020) Microbial use for azo dye degradation—a strategy for dye bioremediation. International Microbiology 23(2):149–159

    Article  CAS  Google Scholar 

  52. Mani S, Chowdhary P, and Bharagava RN, Textile wastewater dyes: toxicity profile and treatment approaches, in Emerging and eco-friendly approaches for waste management. 2019, Springer. p. 219–244.

    Chapter  Google Scholar 

  53. Guo G, Tian F, Zhang C, Liu T, Yang F, Hu Z, Liu C, Wang S, and Ding K (2019) Performance of a newly enriched bacterial consortium for degrading and detoxifying azo dyes. Water Science and Technology 79(11):2036–2045

    Article  CAS  Google Scholar 

  54. Zahran SA, Ali-Tammam M, Hashem AM, Aziz RK, and Ali AE (2019) Azoreductase activity of dye-decolorizing bacteria isolated from the human gut microbiota. Scientific reports 9(1):1–14

    Article  CAS  Google Scholar 

  55. Kunjadia PD, Sanghvi GV, Kunjadia AP, Mukhopadhyay PN, and Dave GS (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus 5(1):1–9

    Article  CAS  Google Scholar 

  56. Kalmış E, Azbar N, and Kalyoncu F (2008) Evaluation of two wild types of Pleurotus ostreatus (MCC07 and MCC20) isolated from nature for their ability to decolorize Benazol Black ZN textile dye in comparison to some commercial types of white rot fungi: Pleurotus ostreatus, Pleurotus djamor, and Pleurotus citrinopileatus. Canadian journal of microbiology 54(5):366–370

    Article  Google Scholar 

  57. Qu Y, Shi S, Ma F, and Yan B (2010) Decolorization of reactive dark blue KR by the synergism of fungus and bacterium using response surface methodology. Bioresource technology 101(21):8016–8023

    Article  CAS  Google Scholar 

  58. Gou M, Qu Y, Zhou J, Ma F, and Tan L (2009) Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. Journal of Hazardous Materials 170(1):314–319

    Article  CAS  Google Scholar 

  59. Tan L, Ning S, Zhang X, and Shi S (2013) Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource technology 138:307–313

    Article  CAS  Google Scholar 

  60. Cheng W, Sim H, Ahmad S, Syed M, Shukor M, and Yusof M (2016) Characterization of an azo-dye-degrading white rot fungus isolated from Malaysia. Mycosphere 7(5):560–569

    Article  Google Scholar 

  61. Bumpus JA (2004) Biodegradation of azo dyes by fungi. Mycology series 21:457–470

    CAS  Google Scholar 

  62. Mohan SV, Rao NC, Prasad KK, and Karthikeyan J (2002) Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Management 22(6):575–582

    Article  Google Scholar 

  63. Yan H and Pan G (2004) Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon. Chemosphere 55(9):1281–1285

    Article  CAS  Google Scholar 

  64. Fu L, Bai Y-N, Lu Y-Z, Ding J, Zhou D, and Zeng RJ (2019) Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. Journal of hazardous materials 364:264–271

    Article  CAS  Google Scholar 

  65. Durán N, Rosa MA, D’Annibale A, and Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and microbial technology 31(7):907–931

    Article  Google Scholar 

  66. Mehta R, Singhal P, Singh H, Damle D, and Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3 Biotech 6(1):81

    Google Scholar 

  67. Imran M, Negm F, Hussain S, Ashraf M, Ashraf M, Ahmad Z, Arshad M, and Crowley DE (2016) Characterization and purification of membrane-bound azoreductase from azo dye degrading Shewanella sp. strain IFN4. CLEAN–Soil, Air, Water 44(11):1523–1530

    CAS  Google Scholar 

  68. Khan S and Malik A (2016) Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Canadian journal of microbiology 62(3):220–232

    Article  Google Scholar 

  69. Kanagaraj J, Senthilvelan T, and Panda R (2015) Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy 17(6):1443–1456

    Article  CAS  Google Scholar 

  70. Du L-N, Li G, Zhao Y-H, Xu H-K, Wang Y, Zhou Y, and Wang L (2015) Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. International Biodeterioration & Biodegradation 105:66–72

    Article  CAS  Google Scholar 

  71. Galai S, Korri-Youssoufi H, and Marzouki MN (2014) Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization. Journal of Chemical Technology & Biotechnology 89(11):1741–1750

    Article  CAS  Google Scholar 

  72. Santos A, Mendes S, Brissos V, and Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Applied microbiology and biotechnology 98(5):2053–2065

    Article  CAS  Google Scholar 

  73. Agrawal S, Tipre D, Patel B, and Dave S (2014) Optimization of triazo Acid Black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway. Process Biochemistry 49(1):110–119

    Article  CAS  Google Scholar 

  74. Bedekar PA, Saratale RG, Saratale GD, and Govindwar SP (2014) Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to Reactive Orange 16, degradation of RO16 and evaluation of toxicity. Environmental Science and Pollution Research 21(18):11075–11085

    Article  CAS  Google Scholar 

  75. Prasad SS and Aikat K (2014) Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environmental technology 35(8):956–965

    Google Scholar 

  76. Kolekar YM, Konde PD, Markad VL, Kulkarni SV, Chaudhari AU, and Kodam KM (2013) Effective bioremoval and detoxification of textile dye mixture by Alishewanella sp. KMK6. Applied microbiology and biotechnology 97(2):881–889

    Article  CAS  Google Scholar 

  77. Chandra R, Abhishek A, and Sankhwar M (2011) Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresource technology 102(11):6429–6436

    Article  CAS  Google Scholar 

  78. Malherbe S and Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology 1(2):105–114

    Article  CAS  Google Scholar 

  79. Muaaz-Us-Salam S, Cleall PJ, and Harbottle MJ (2020) Application of enzymatic and bacterial biodelignification systems for enhanced breakdown of model lignocellulosic wastes. Science of The Total Environment 728:138741

    Article  CAS  Google Scholar 

  80. Puentes-Téllez PE and Salles JF (2018) Construction of effective minimal active microbial consortia for lignocellulose degradation. Microbial ecology 76(2):419–429

    Article  Google Scholar 

  81. Guo H, Wang X-D, and Lee D-J (2018) Proteomic researches for lignocellulose-degrading enzymes: A mini-review. Bioresource technology 265:532–541

    Article  CAS  Google Scholar 

  82. Catto AL, Montagna LS, Almeida SH, Silveira RM, and Santana RM (2016) Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration & Biodegradation 109:11–22

    Article  CAS  Google Scholar 

  83. Meereboer KW, Misra M, and Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry 22(17):5519–5558

    Article  CAS  Google Scholar 

  84. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angewandte Chemie International Edition 54(11):3210–3215

    Article  CAS  Google Scholar 

  85. Yang Y, Yang J, and Jiang L (2016) Comment on “A bacterium that degrades and assimilates poly (ethylene terephthalate)”. Science 353(6301):759–759

    Article  CAS  Google Scholar 

  86. Jabloune R, Khalil M, Moussa IEB, Simao-Beaunoir A-M, Lerat S, Brzezinski R, and Beaulieu C (2020) Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes and environments 35(1):ME19086

    Google Scholar 

  87. Farzi A, Dehnad A, and Fotouhi AF (2019) Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and agricultural biotechnology 17:25–31

    Article  Google Scholar 

  88. Yoshida S, Hiraga K, Taniguchi I, and Oda K (2021) Ideonella sakaiensis, PETase, and MHETase: From identification of microbial PET degradation to enzyme characterization. Methods in Enzymology 648:187–205

    Article  CAS  Google Scholar 

  89. Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, Höppner A, Ferrer M, Gohlke H, Smits SH, and Jaeger K-E (2020) A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri–Structural and functional insights. Frontiers in microbiology 11:114

    Article  Google Scholar 

  90. Farzi A, Dehnad A, Shirzad N, and Norouzifard F (2017) Biodegradation of high density polyethylene using Streptomyces species. J. Coast. Life Med 5:474–479

    Article  CAS  Google Scholar 

  91. Abraham J, Ghosh E, Mukherjee P, and Gajendiran A (2017) Microbial degradation of low density polyethylene. Environmental Progress & Sustainable Energy 36(1):147–154

    Article  CAS  Google Scholar 

  92. Novotný Č, Malachová K, Adamus G, Kwiecień M, Lotti N, Soccio M, Verney V, and Fava F (2018) Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. International Biodeterioration & Biodegradation 132:259–267

    Article  Google Scholar 

  93. Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang Y, and Zhang W (2019) Biodegradation of Polyethylene by Enterobacter sp. D1 from the Guts of Wax Moth Galleria mellonella. International journal of environmental research and public health 16(11):1941

    Google Scholar 

  94. Mahdi MS, Ameen RS, and Ibrahim HK (2016) Study on degradation of nylon 6 by thermophilic bacteria Anoxybacillus rupiensis Ir3 (JQ912241). Int J Adv Res Biol Sci 3(9):200–209

    Article  CAS  Google Scholar 

  95. Ambika D, Lakshmi B, and Hemalatha K (2015) Degradation of low density polythene by Achromobacter denitrificans strain s1, a novel marine isolate. Int J Rec Sci Res 6(7):5454–5464

    Google Scholar 

  96. Muhonja CN, Makonde H, Magoma G, and Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PloS one 13(7):e0198446

    Article  Google Scholar 

  97. Sangale MK, Shahnawaz M, and Ade AB (2019) Gas chromatography-Mass Spectra analysis and deleterious potential of fungal based polythene-degradation products. Scientific reports 9(1):1–6

    Article  Google Scholar 

  98. Sumathi T, Viswanath B, Sri Lakshmi A, and SaiGopal D (2016) Production of laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochemistry research international 2016

    Google Scholar 

  99. Haider TP, Völker C, Kramm J, Landfester K, and Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition 58(1):50–62

    Article  CAS  Google Scholar 

  100. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, and Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research 25(8):7287–7298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Jahidul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haque, M.J., Rahman, M.S. (2023). Biodegradation of Industrial Materials. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_52

Download citation

Publish with us

Policies and ethics