Skip to main content

Molecular Evolution in Australasian Marsupials

  • Reference work entry
  • First Online:
American and Australasian Marsupials

Abstract

This chapter outlines the history of molecular evolutionary research in australidelphian marsupials, along with the genetic and genomic advances that have provided insights into the evolution, phylogenetic relationships, adaptation, diversification, development, and conservation of Australasian marsupials. Marsupials have long been a focus of molecular evolutionary research, on account of unique features such as their specialized reproduction, ancient divergence, Gondwanan distribution, and evolutionary convergence with eutherians. Research into molecular evolution in australidelphian marsupials has aimed to: (i) reconstruct their evolutionary history; (ii) understand the mechanisms of molecular and functional evolution; and iii) characterize intraspecific diversification and fine-scale population dynamics to inform conservation management. To address any question in evolutionary biology, a sound framework of the evolutionary history and relationships of taxa is required. Molecular data have been a key source of data for resolving the phylogenetic relationships and timing of divergence of species, as well as the evolutionary processes driving the diversification of Australasian marsupials. Considerable progress has been made in recent decades, and the rapid growth of genome sequence data presents a valuable source of information about marsupial evolution. This chapter explores the growing understanding of molecular evolution in australidelphian marsupials and the insights gained from both individual and comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Carretero S, Tamuri AU, Battini M et al (2022) A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602:263–267

    PubMed  Google Scholar 

  • Amrine-Madsen H, Scally M, Westerman M et al (2003) Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Mol Phylogenet Evol 28:186–196

    CAS  PubMed  Google Scholar 

  • Ávila-Arcos MC, Ho SYW, Ishida Y et al (2013) One hundred twenty years of koala retrovirus evolution determined from museum skins. Mol Biol Evol 30:299–304

    PubMed  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Springer, New York

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Baker AM, Mutton TY, Hine HB et al (2014) The black-tailed antechinus, Antechinus arktos sp. nov.: a new species of carnivorous marsupial from montane regions of the Tweed Volcano caldera, eastern Australia. Zootaxa 3765:101–133

    PubMed  Google Scholar 

  • Baverstock PR, Adams M, Archer M (1984) Electrophoretic resolution of species boundaries in the Sminthopsis murina complex (Dasyuridae). Aust J Zool 32:823–832

    Google Scholar 

  • Baverstock PR, Krieg M, Birrell J (1989a) Evolutionary relationships of Australian marsupials as assessed by albumin immunology. Aust J Zool 37:273–287

    Google Scholar 

  • Baverstock PR, Richardson BJ, Birrell J, Krieg M (1989b) Albumin immunologic relationships of the Macropodidae (Marsupialia). Syst Zool 38:38–50

    Google Scholar 

  • Beck RMD (2008) A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. J Mammal 89:175–189

    Google Scholar 

  • Beck RMD, Voss RS, Jansa SA (2022) Craniodental morphology and phylogeny of marsupials. Bull Am Mus Nat Hist 457:1–352

    Google Scholar 

  • Belov K, Miller RD, Old JM et al (2013) Marsupial immunology bounding ahead. Aust J Zool 61:24–40

    Google Scholar 

  • Bender HS, Murchison EP, Pickett HA et al (2012) Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLoS One 7:e46195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandies P, Peel E, Hogg CJ et al (2019) The value of reference genomes in the conservation of threatened species. Genes 10:846–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandies PA, Tang S, Johnson RSP et al (2020) The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies. Gigabyte. https://doi.org/10.46471/gigabyte.7

  • Card DC, Shapiro B, Giribet G et al (2021) Museum genomics. Annu Rev Genet 55:633–659

    PubMed  Google Scholar 

  • Catullo RA, Schembri R, Tedeschi LG et al (2021) Benchmarking taxonomic and genetic diversity after the fact: lessons learned from the catastrophic 2019–2020 Australian bushfires. Front Ecol Evol 9:645820

    Google Scholar 

  • Cheng Y, Polkinghorne A, Gillett A et al (2018) Characterisation of MHC class I genes in the koala. Immunogenetics 70:125–133

    CAS  PubMed  Google Scholar 

  • Close RL, Lowry PS (1989) Hybrids in marsupial research. Aust J Zool 37:259–267

    Google Scholar 

  • Cooper DW, Johnston PG, Watson JM et al (1993) X-inactivation in marsupials and monotremes. Semin Dev Biol 4:117–128

    Google Scholar 

  • Deakin JE (2018) Chromosome evolution in marsupials. Genes 9:72

    PubMed  PubMed Central  Google Scholar 

  • Deakin JE, O’Neill RJ (2020) Evolution of marsupial genomes. Annu Rev Anim Biosci 8:25–45

    CAS  PubMed  Google Scholar 

  • Deakin JE, Delbridge ML, Koina E et al (2013) Reconstruction of the ancestral marsupial karyotype from comparative gene maps. BMC Evol Biol 13:258

    PubMed  PubMed Central  Google Scholar 

  • Deakin JE, Potter S, O’Neill R et al (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10:627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodt WG, Gallus S, Phillips MJ et al (2017) Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias. Sci Rep 7:16811

    PubMed  PubMed Central  Google Scholar 

  • Doronina L, Feigin CY, Schmitz J (2022) Reunion of Australasian possums by shared SINE insertions. Syst Biol 71:1045–1053

    PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ et al (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    PubMed  PubMed Central  Google Scholar 

  • Duchêne DA, Bragg JG, Duchêne S et al (2018) Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst Biol 67:400–412

    PubMed  Google Scholar 

  • Eldridge MDB (2010) Population and conservation genetics of marsupials. In: Deakin JE, Waters PD, Graves JAM (eds) Marsupial genetics and genomics. Springer, Heidelberg, pp 461–497

    Google Scholar 

  • Eldridge MDB, Close RL (1992) Taxonomy of rock wallabies, Petrogale (Marsupialia, Macropodidae). I. A revision of the eastern Petrogale with the description of 3 new species. Aust J Zool 40:605–625

    Google Scholar 

  • Eldridge MDB, Metcalfe CJ (2006) Marsupialia. In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of mammalian chromosomes. Wiley, Hoboken, pp 9–62

    Google Scholar 

  • Eldridge MDB, Potter S, Helgen KM et al (2018) Phylogenetic analysis of the tree-kangaroos (Dendrolagus) reveals multiple divergent lineages within New Guinea. Mol Phylogenet Evol 127:589–599

    PubMed  Google Scholar 

  • Eldridge MDB, Beck RMD, Croft DA et al (2019) An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). J Mammal 100:802–837

    Google Scholar 

  • Eldridge MDB, Deakin JE, MacDonald AJ et al (2020) The Oz Mammals Genomics (OMG) initiative: developing genomic resources for mammal conservation at a continental scale. Aust Zool 40:505–509

    Google Scholar 

  • Ellegren H (2011) Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet 12:157–166

    CAS  PubMed  Google Scholar 

  • Feigin CY, Newton AH, Doronina L et al (2017) Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol 2:182–192

    PubMed  Google Scholar 

  • Feng S, Bai M, Rivas-González I et al (2022) Incomplete lineage sorting and phenotypic evolution in marsupials. Cell 185:1646–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    CAS  PubMed  Google Scholar 

  • Ferreri GC, Marzelli M, Rens W et al (2004) A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials. Cytogenet Genome Res 107:115118

    Google Scholar 

  • Foster JW, Brennan FE, Hampikian GK et al (1992) Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359:531–533

    CAS  PubMed  Google Scholar 

  • Gallus S, Janke A, Kumar V et al (2015) Disentangling the relationship of the Australian marsupial orders using retrotransposon and evolutionary network analyses. Genome Biol Evol 7:985–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant J, Mahadevaiah SK, Khil P et al (2012) Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487:254–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graves JAM (2002) The rise and fall of SRY. Trends Genet 18:259–264

    Google Scholar 

  • Graves JAM, Renfree MB (2013) Marsupials in the age of genomics. Annu Rev Genomics Hum Genet 14:393–420

    PubMed  Google Scholar 

  • Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109

    Google Scholar 

  • Hayman DL (1989) Marsupial cytogenetics. Aust J Zool 37:331–349

    Google Scholar 

  • Ho SYW (2020) The molecular evolutionary clock: theory and practice. Springer, Cham

    Google Scholar 

  • Hogg CJ, Fox S, Pemberton D et al (2019) Saving the Tasmanian devil: recovery through science-based management. CSIRO Publishing, Melbourne

    Google Scholar 

  • Ingles ED, Deakin JE (2016) Telomeres, species differences, and unusual telomeres in vertebrates: presenting challenges and opportunities to understanding telomere dynamics. AIMS Genet 3:1–24

    Google Scholar 

  • Ingles ED, Deakin JE (2018) The methylation and telomere landscape in two families of marsupials with different rates of chromosome evolution. Chromosom Res 26:317–332

    CAS  Google Scholar 

  • Johnson RN, O’Meally D, Chen Z et al (2018) Adaptation and conservation insights from the koala genome. Nat Genet 50:1102–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston PG, Watson CM, Adams M et al (2002) Sex chromosome elimination, X chromosome inactivation and reactivation in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Cytogenet Genome Res 99:119–124

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173:419–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch JAW (1977) The comparative serology of Marsupialia, and a classification of marsupials. Aust J Zool Supp Ser 52:1–152

    Google Scholar 

  • Kirsch JAW, Poole WE (1972) Taxonomy and distribution of the grey kangaroos Macropus giganteus Shaw and Macropus fuliginosus (Desmarest), and their subspecies (Marsupialia: Macropodidae). Aust J Zool 20:315–339

    Google Scholar 

  • Kirsch JAW, Lapointe FJ, Springer MS (1997) DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280

    CAS  Google Scholar 

  • Llamas B, Brotherton P, Mitchell KJ et al (2015) Late Pleistocene Australian marsupial DNA clarifies the affinities of extinct megafaunal kangaroos and wallabies. Mol Biol Evol 32:574–584

    CAS  PubMed  Google Scholar 

  • Lott MJ, Wright BR, Neaves LE et al (2022) Future-proofing the koala: synergising genomic and environmental data for effective species management. Mol Ecol 31:3035–3055

    PubMed  Google Scholar 

  • Luo Z-X (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019

    CAS  PubMed  Google Scholar 

  • Luzuriaga-Neira AR, Alvarez-Ponce D (2022) Rates of protein evolution across the marsupial phylogeny: heterogeneity and link to life-history traits. Genome Biol Evol 14:evab277

    CAS  PubMed  Google Scholar 

  • Malekian M, Cooper SJB, Norman JA et al (2010) Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea. Mol Phylogenet Evol 54:122–135

    CAS  PubMed  Google Scholar 

  • Martin A, Carver S, Proft K et al (2019) Isolation, marine transgression and translocation of the bare-nosed wombat (Vombatus ursinus). Evol Appl 12:1114–1123

    PubMed  PubMed Central  Google Scholar 

  • Meredith RW, Westerman M, Case JA et al (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mamm Evol 15:1–36

    Google Scholar 

  • Metcalfe CJ, Bulazel KV, Ferreri GC et al (2007a) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177:2507–2517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe CJ, Eldridge MDB, Johnston PG (2007b) Mapping the distribution of the telomeric sequence (T2AG3)n in the Macropodoidea (Marsupialia) by fluorescence in situ hybridization. II. The ancestral 2n=22 macropodid karyotype. Cytogenet Genome Res 116:212–217

    CAS  PubMed  Google Scholar 

  • Miller W, Hayes VM, Ratan A et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilis harrisii (Tasmanian devil). Proc Natl Acad Sci U S A 108:12348–12353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell KJ, Pratt RC, Watson LN et al (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31:2322–2330

    CAS  PubMed  Google Scholar 

  • Murchison EP, Schulz-Trieglaff OB, Ning Z et al (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen JMT, Ho SYW (2020) Calibrations from the fossil record. In: Ho SYW (ed) The molecular evolutionary clock: theory and practice. Springer, Cham, pp 117–133

    Google Scholar 

  • Nguyen JMT, Molak M, Black KH et al (2011) Vertebrate palaeontology of Australasia into the twenty-first century. Biol Lett 7:804–806

    PubMed  PubMed Central  Google Scholar 

  • Nilsson MA, Churakov G, Sommer M et al (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:e1000436

    PubMed  PubMed Central  Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286

    Google Scholar 

  • Palazzo AF, Gregory TR (2014) The case for junk DNA. PLoS Genet 10:e1004351

    PubMed  PubMed Central  Google Scholar 

  • Peel E, Silver L, Brandies P et al (2021) A reference genome for the critically endangered woylie, Bettongia penicillata ogilbyi. Gigabyte. https://doi.org/10.46471/gigabyte.35

  • Peel E, Silver L, Brandies P et al (2022) Genome assembly of the numbat (Myrmecobius fasciatus), the only termitivorous marsupial. Gigabyte. https://doi.org/10.46471/gigabyte.47

  • Phillips MJ, McLenachan PA, Down C et al (2006) Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. Syst Biol 55:122–137

    PubMed  Google Scholar 

  • Phillips MJ, Cascini M, Celik M (2022) Identifying complex DNA contamination in pig-footed bandicoots helps to clarify an anomalous ecological transition. Diversity 14:352

    CAS  Google Scholar 

  • Platt RN, Vandewege MW, Ray DA (2018) Mammalian transposable elements and their impacts on genome evolution. Chromosom Res 26:25–43

    CAS  Google Scholar 

  • Potter S, Cooper SJB, Metcalfe CJ et al (2012) Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia. Mol Phylogenet Evol 62:640–652

    PubMed  Google Scholar 

  • Potter S, Bragg JG, Blom MPK et al (2017) Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Front Genet 8:10

    PubMed  PubMed Central  Google Scholar 

  • Potter S, Bragg JG, Turakulov R et al (2022) Limited introgression between rock-wallabies with extensive chromosomal rearrangements. Mol Biol Evol 39:msab333

    CAS  PubMed  Google Scholar 

  • Renfree MB, Papenfuss AT, Deakin JE et al (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:R81

    PubMed  PubMed Central  Google Scholar 

  • Rens W, O’Brien PCM, Fairclough H et al (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102:282–290

    CAS  PubMed  Google Scholar 

  • Rofe RH, Hayman DL (1985) G-banding evidence for a conserved complement in the Marsupialia. Cytogenet Cell Genet 39:40–50

    CAS  PubMed  Google Scholar 

  • Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548

    PubMed  Google Scholar 

  • Sharman GB (1961) The mitotic chromosomes of marsupials and their bearing on taxonomy and phylogeny. Aust J Zool 9:8–60

    Google Scholar 

  • Siddle HV, Deakin JE, Coggill P et al (2011) The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics 12:421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silver LW, Cheng Y, Quigley BL et al (2022) A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol Ecol 31:3286–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    CAS  PubMed  Google Scholar 

  • Springer MS (1997) Molecular clocks and the timing of the placental and marsupial radiations in relation to the cretaceous-tertiary boundary. J Mamm Evol 4:285–302

    Google Scholar 

  • Travouillon KJ, Phillips MJ (2018) Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species. Zootaxa 4378:224–256

    PubMed  Google Scholar 

  • Watson ET, Demuth JP (2012) Haldane’s rule in marsupials: what happens when both sexes are functionally hemizygous? J Hered 103:453–458

    PubMed  PubMed Central  Google Scholar 

  • Watson CM, Margan SH, Johnston PG (1998) Sex-chromosome elimination in the bandicoot Isoodon macrourus using Y-linked markers. Cytogenet Cell Genet 81:54–59

    CAS  PubMed  Google Scholar 

  • Weeks AR, Heinze D, Perrin L et al (2017) Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat Commun 8:1071

    PubMed  PubMed Central  Google Scholar 

  • West R, Potter S, Taggart D et al (2018) Looking back to go forward: genetics informs future management of captive and reintroduced populations of the black-footed rock-wallaby Petrogale lateralis. Conserv Genet 19:235–247

    Google Scholar 

  • Westerman M, Meredith RW, Springer MS (2010) Cytogenetics meets phylogenetics: a review of karyotype evolution in diprotodontian marsupials. J Hered 101:690–702

    PubMed  Google Scholar 

  • Willi Y, Kristensen TN, Sgrò CM et al (2021) Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. Proc Natl Acad Sci U S A 119:e2105076119

    PubMed Central  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225

    Google Scholar 

Download references

Acknowledgments

S.P. was funded by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Potter .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Potter, S., Eldridge, M.D.B., Ho, S.Y.W. (2023). Molecular Evolution in Australasian Marsupials. In: Cáceres, N.C., Dickman, C.R. (eds) American and Australasian Marsupials. Springer, Cham. https://doi.org/10.1007/978-3-031-08419-5_58

Download citation

Publish with us

Policies and ethics