Skip to main content

Triboelectric Nanogenerator for Underwater Sensing

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 153 Accesses

Abstract

Underwater sensing refers to the process that the underwater system acquires the target signals from marine environment with acoustic, optical, magnetic, electrical, and other sensors and obtains target characteristic information through signal processing. Energy supply issues and insufficient sensing performance have always hindered development of underwater sensing. With the characteristics of self-power and high signal-to-noise ratio, TENG yields unique advantages in sensing. Therefore, TENG-based self-powered sensors and energy harvesting devices might give rise to an important technological evolution for underwater sensing. The diversity of TENG in structure and material enables it to realize the function of underwater sensing in different application scenarios. In this chapter, the TENGs for underwater sensing are classified into the following five categories: underwater positioning and tracking, underwater structure monitoring, underwater communications, underwater wearable devices, and energy supply of underwater sensing network. Some representative works have been be selected to show the enormous potential of TENG in underwater sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arshad MR (2009) Recent advancement in sensor technology for underwater applications. Indian J Geo-Marine Sci (IJMS) 38:267–273

    Google Scholar 

  • Awan KM, Shah PA, Iqbal K, Gillani S, Ahmad W, Nam Y (2019) Underwater wireless sensor networks: a review of recent issues and challenges. Wirel Commun Mob Comput 2019

    Google Scholar 

  • Chutia S, Kakoty NM, Deka D (2017) A review of underwater robotics, navigation, sensing techniques and applications. Proc Advan Robotics:1–6

    Google Scholar 

  • Jian M, Liu X, Luo H, Lu X, Yu H, Dong J (2021) Underwater image processing and analysis: a review. Signal Process Image Commun 91:116088

    Article  Google Scholar 

  • Lin M, Yang C (2020) Ocean observation technologies: a review. Chinese J Mech Eng 33(1):1–18

    Article  Google Scholar 

  • Liu J, Liu M, Sun C, Lin Z, Feng Z, Si S, Yang J (2022a) Triboelectric hydrophone for underwater detection of low-frequency sounds. Nano Energy 107428

    Google Scholar 

  • Liu J, Xu P, Zheng J, Liu X, Wang X, Wang S et al (2022b) Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance. Nano Energy 101:107633

    Article  CAS  Google Scholar 

  • Luo J, Han Y, Fan L (2018) Underwater acoustic target tracking: a review. Sensors 18(1):112

    Article  Google Scholar 

  • Massot-Campos M, Oliver-Codina G (2015) Optical sensors and methods for underwater 3D reconstruction. Sensors 15(12):31525–31557

    Article  Google Scholar 

  • Shi Y, Zhang C, Li R, Cai M, Jia G (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors 15(12):31036–31055

    Article  Google Scholar 

  • Sun K, Cui W, Chen C (2021) Review of underwater sensing technologies and applications. Sensors 21(23):7849

    Article  Google Scholar 

  • Wang Y, Liu X, Chen T, Wang H, Zhu C, Yu H et al (2021a) An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 90. https://doi.org/10.1016/j.nanoen.2021.106503

  • Wang Y, Liu X, Wang Y, Wang H, Wang H, Zhang SL et al (2021b) Flexible seaweed-like triboelectric Nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15(10):15700–15709. https://doi.org/10.1021/acsnano.1c05127

    Article  CAS  Google Scholar 

  • Wang X, Shi Y, Yang P, Tao X, Li S, Lei R et al (2022a) Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring. Small 18(10):e2107232. https://doi.org/10.1002/smll.202107232

    Article  CAS  Google Scholar 

  • Wang S, Xu P, Wang X, Zheng J, Liu X, Liu J et al (2022b) Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 97. https://doi.org/10.1016/j.nanoen.2022.107210

  • Xu P, Liu J, Liu X, Wang X, Zheng J, Wang S et al (2022) A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. npj Flexible Electronics 6(1). https://doi.org/10.1038/s41528-022-00160-0

  • Yam JW (2021) Investigation on the effects and performance of underwater imaging target detection. Monash University

    Google Scholar 

  • Yu A, Song M, Zhang Y, Zhang Y, Chen L, Zhai J, Wang ZL (2014) Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res 8(3):765–773. https://doi.org/10.1007/s12274-014-0559-z

    Article  CAS  Google Scholar 

  • Zhang Y, Qin B, Zhu G, Gao G, Luo L, Chen W (2006) Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: a case study in Longgan Lake and Taihu Lake. Science in China Series D 49(1):114–125

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Cheng R, Shen S, Yi J, Peng X et al (2022) Underwater monitoring networks based on cable-structured triboelectric nanogenerators. Research (Washington, DC) 2022:9809406. https://doi.org/10.34133/2022/9809406

    Article  Google Scholar 

  • Zhao C, Liu D, Wang Y, Hu Z, Zhang Q, Zhang Z et al (2022a) Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures. Nano Energy 94. https://doi.org/10.1016/j.nanoen.2022.106926

  • Zhao H, Xu M, Shu M, An J, Ding W, Liu X et al (2022b) Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat Commun 13(1):1–10

    Google Scholar 

  • Zou Y, Tan P, Shi B, Ouyang H, Jiang D, Liu Z et al (2019) A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat Commun 10(1):2695. https://doi.org/10.1038/s41467-019-

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minyi Xu or Zhong Lin Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, M., Wang, H., Wang, S., Wang, Z.L. (2023). Triboelectric Nanogenerator for Underwater Sensing. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics