Skip to main content

On Variable Splitting and Augmented Lagrangian Method for Total Variation-Related Image Restoration Models

  • Reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
  • 1957 Accesses

Abstract

Variable splitting and augmented Lagrangian method are widely used in image processing. This chapter briefly reviews its applications for solving the total variation (TV) related image restoration problems. Due to the nonsmoothness of TV, related models and variants are nonsmooth convex or nonconvex minimization problems. Variable splitting and augmented Lagrangian method can benefit from the separable structure and efficient subsolvers, and has convergence guarantee in convex cases. We present this approach for a number of TV minimization models including TV-L2, TV-L1, TV with nonquadratic fidelity term, multichannel TV, high-order TV, and curvature minimization models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  • Bae, E., Shi. J., Tai, X.C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process 20(5), 1199–1210 (2010)

    Google Scholar 

  • Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Process. 12(8), 882–889 (2003)

    Article  Google Scholar 

  • Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Optimization and Neural Computation Series, Athena Scientific, Belmont, Mass (1996(firstly published in 1982))

    Google Scholar 

  • Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998)

    Article  Google Scholar 

  • Boyd, S.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bredies, K., Pock, T., Wirth, B.: A convex, lower semicontinuous approximation of Euler’s elastica energy. SIAM J. Math. Anal. 47(1), 566–613 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Brune, C., Sawatzky, A., Burger, M.: Bregman-em-tv methods with application to optical nanoscopy. In: Tai, X.C., Mørken, K., Lysaker, M., Lie, K.A. (eds.) Scale Space and Variational Methods in Computer Vision. Springer, Berlin/Heidelberg, pp. 235–246 (2009)

    Chapter  Google Scholar 

  • Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1/2), 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, R.H., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  • Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  • Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  • Chang, H., Lou, Y., Ng, M., Zeng, T.: Phase retrieval from incomplete magnitude information via total variation regularization. SIAM J. Sci. Comput. 38(6), A3672–A3695 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C., Chen, Y., Ouyang, Y., Pasiliao, E.: Stochastic accelerated alternating direction method of multipliers with importance sampling. J. Optim. Theory Appl. 179(2), 676–695 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Ng, M.K., Zhang, C.: Non-Lipschitz â„“p-regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, L.J., Glowinski, R., Tai, X.C.: A new operator splitting method for the Euler elastica model for image smoothing. SIAM J. Imaging Sci. 12(2):1190–1230 (2019)

    Article  MathSciNet  Google Scholar 

  • Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, Y., Wang, Y., Hahn, J.: A fast augmented Lagrangian method for Euler’s elastica models. Numer. Math. Theory Methods Appl. 006(001), 47–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, X., Wu, C., Zeng, C.: On the local and global minimizers of â„“0 gradient regularized model with box constraints for image restoration. Inverse Prob. 34(9), 095,007 (2018)

    Article  MathSciNet  Google Scholar 

  • Gao, Y., Liu, F., Yang, X.: Total generalized variation restoration with non-quadratic fidelity. Multidim. Syst. Sign. Process. 29(4), 1459–1484 (2018)

    Article  MATH  Google Scholar 

  • Glowinski, R., Tallec, P.L.: Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  • Glowinski, R., Osher, S.J., Yin, W. (eds.): (2016) Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Cham

    Google Scholar 

  • Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Güven, H.E., Güngör. A., Çetin, M.: An augmented Lagrangian method for complex-valued compressed SAR imaging. IEEE Trans. Comput. Imag. 2(3), 235–250 (2016)

    Google Scholar 

  • Hahn, J., Wu, C., Tai, X.C.: Augmented Lagrangian method for generalized TV-Stokes model. J. Sci. Comput. 50(2), 235–264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • He, B., Yuan, X.: On the o(1∕n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1–2), 109–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller, M., Wu, T.: Nonconvex TVq-models in image restoration: Analysis and a trust-region regularization–based superlinearly convergent solver. SIAM J. Imaging Sci. 6(3), 1385–1415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, S.H., Zhu, W., Jianhong, J.: Illusory shapes via corner fusion. SIAM J. Imaging Sci. 7(4), 1907–1936 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, R., Chan, T.F.: A framework for intrinsic image processing on surfaces. Comput. Vis. Image Und 115(12), 1647–1661 (2011)

    Article  Google Scholar 

  • Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27, 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  • Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Z., Wali, S., Duan, Y., Chang, H., Wu, C., Tai, X.C.: Proximal ADMM for Euler’s elastica based image decomposition model. Numer. Math. Theory Methods Appl. 12(2), 370–402 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, Y., Zhang, X., Osher, S., Bertozzi, A.L.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lysaker, M., Lundervold, A., Tai, X.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  • Micchelli, C.A., Shen, L., Xu, Y.: Proximity algorithms for image models: denoising. Inverse Prob. 27(4), 045,009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Myllykoski, M., Glowinski, R., Karkkainen, T., Rossi, T.: A new augmented Lagrangian approach for L1-mean curvature image denoising. SIAM J. Imaging Sci. 8(1), 95–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Persson, M., Bone, D., Elmqvist, H.: Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography. Phys. Med. Biol. 46(3), 853–866 (2001)

    Article  Google Scholar 

  • Ramani, S., Fessler, J.A.: Parallel MR image reconstruction using augmented Lagrangian methods. IEEE Trans. Med. Imaging 30(3), 694–706 (2011)

    Article  Google Scholar 

  • Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control 12(2), 268–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin/Heidelberg (1998)

    Book  MATH  Google Scholar 

  • Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Sapiro, G., Ringach, D.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5, 1582–1586 (1996)

    Article  MATH  Google Scholar 

  • Selesnick, I., Lanza, A., Morigi, S., Sgallari, F.: Non-convex total variation regularization for convex denoising of signals. J. Math. Imaging Vis. 62(6), 825–841 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Tai, X.C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, 1–5 June 2009. Proceedings, pp 502–513 (2009)

    Google Scholar 

  • Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1/3), 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., Yuan, X.: The linearized alternating direction method of multipliers for dantzig selector. SIAM J. Sci. Comput. 34(5), A2792–A2811 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Zhang, J., Tai, X.C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5(1), 237–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Zhang, J., Duan, Y., Tai, X.C.: Augmented lagrangian method for total variation based image restoration and segmentation over triangulated surfaces. J. Sci. Comput. 50(1), 145–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Liu, Z., Wen, S.: A general truncated regularization framework for contrast-preserving variational signal and image restoration: Motivation and implementation. Sci. China Math. 61(9), 1711–1732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, M., Duan, Y.: Nonlocal elastica model for sparse reconstruction. J. Math. Imaging Vis. 62, 532–548 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Yashtini, M., Kang, S.H.: A fast relaxed normal two split method and an effective weighted TV approach for Euler’s elastica image inpainting. SIAM J. Imaging Sci. 9(4), 1552–1581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, C., Wu, C.: On the edge recovery property of noncovex nonsmooth regularization in image restoration. SIAM J. Numer. Anal. 56(2), 1168–1182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, C., Wu, C.: On the discontinuity of images recovered by noncovex nonsmooth regularized isotropic models with box constraints. Adv. Comput. Math. 45(2), 589–610 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Wu, C., Zhang, J., Deng, J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. Comput. Graphics 21(7), 873–886 (2015)

    Article  Google Scholar 

  • Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8(4), 2487–2518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM J. Imaging Sci. 5(1), 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Prob. Imaging 7(4), 1409–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Tai is supported by NSFC/RGC Joint Research Scheme (N_HKBU214/19), Initiation Grant for Faculty Niche Research Areas(RC-FNRA-IG/19-20/SCI/01) and CRF (C1013-21GF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, Z., Duan, Y., Wu, C., Tai, XC. (2023). On Variable Splitting and Augmented Lagrangian Method for Total Variation-Related Image Restoration Models. In: Chen, K., Schönlieb, CB., Tai, XC., Younes, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98661-2_84

Download citation

Publish with us

Policies and ethics