Skip to main content

Learned Regularizers for Inverse Problems

  • Reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
  • 2007 Accesses

Abstract

In the past years, there has been a surge of interest in methods to solve inverse problems that are based on neural networks and deep learning. A variety of approaches have been proposed, showing improvements in reconstruction quality over existing methods. Among those, a class of algorithms builds on the well-established variational framework, training a neural network as a regularization functional. Those approaches come with the advantage of a theoretical understanding and a stability theory that is built on existing results for variational regularization. We discuss various approaches for learning a regularization functional, aiming at giving an overview at the multiple directions investigated by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  • Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  • Arridge, S., Maass, P., Öktem, O., Schönlieb, C.-B.: Solving inverse problems using data-driven models. Acta Numer. 28, 1–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Calatroni, L., Cao, C., De Los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: Bilevel approaches for learning of variational imaging models. RADON Book Series 18 (2012)

    Google Scholar 

  • Chen, Y., Pock, T., Ranftl, R., Bischof, H.: Revisiting loss-specific training of filter-based MRFs for image restoration. In: German Conference on Pattern Recognition, pp. 271–281. Springer (2013)

    Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media, Dordrecht (1996)

    Book  MATH  Google Scholar 

  • Jia, X., Liu, S., Feng, X., Zhang, L.: Focnet: a fractional optimal control network for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6054–6063 (2019)

    Google Scholar 

  • Jin, K.H., McCann, M., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: connecting variational methods and deep learning. In: German Conference on Pattern Recognition, pp. 281–293. Springer (2017)

    Google Scholar 

  • Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems (2020)

    Book  MATH  Google Scholar 

  • Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci. 6(2), 938–983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Probl. 36, 065005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lunz, S., Öktem, O., Schönlieb, C.-B.: Adversarial regularizers in inverse problems. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 8507–8516. Curran Associates, Inc., Red Hook (2018)

    Google Scholar 

  • Meinhardt, T., Moller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1781–1790 (2017)

    Google Scholar 

  • Obmann, D., Schwab, J., Haltmeier, M.: Deep synthesis regularization of inverse problems. arXiv preprint arXiv:2002.00155 (2020a)

    Google Scholar 

  • Obmann, D., Nguyen, L., Schwab, J., Haltmeier, M.: Sparse aNETT for solving inverse problems with deep learning. arXiv preprint arXiv:2004.09565 (2020b)

    Google Scholar 

  • Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (red). SIAM J. Imaging Sci. 10(4), 1804–1844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  • Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 860–867. IEEE (2005)

    Google Scholar 

  • Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  • Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., Wang, G.: Low-dose x-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012)

    Article  Google Scholar 

  • Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Lunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lunz, S. (2023). Learned Regularizers for Inverse Problems. In: Chen, K., Schönlieb, CB., Tai, XC., Younes, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98661-2_68

Download citation

Publish with us

Policies and ethics