Skip to main content

Domain Decomposition for Non-smooth (in Particular TV) Minimization

  • Reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
  • 1953 Accesses

Abstract

Domain decomposition is one of the most efficient techniques to derive efficient methods for large-scale problems. In this chapter such decomposition methods for the minimization of the total variation are discussed. We differ between approaches which directly tackle the (primal) total variation minimization and approaches which deal with their predual formulation. Thereby we mainly concentrate on the presentation of domain decomposition methods which guarantee to converge to a solution of the global problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 45(4), 913–917 (1997)

    Article  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (2000)

    MATH  Google Scholar 

  • Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MOS-SIAM Series on Optimization, 2nd edn. Society for Industrial and Applied Mathematics (SIAM)/Mathematical Optimization Society, Philadelphia (2014). Applications to PDEs and optimization

    Google Scholar 

  • Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (2014)

    MATH  Google Scholar 

  • Burger, M., Sawatzky, A., Steidl, G.: First order algorithms in variational image processing. In: Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation, pp. 345–407. Springer, Cham (2016)

    Google Scholar 

  • Cai, J.-F., Chan, R.H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Probl. Imaging 2(2), 187–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Calatroni, L., De Los Reyes, J.C., Schönlieb, C.-B.: Infimal convolution of data discrepancies for mixed noise removal. SIAM J. Imaging Sci. 10(3), 1196–1233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Carstensen, C.: Domain decomposition for a non-smooth convex minimization problem and its application to plasticity. Numer. Linear Algebra Appl. 4(3), 177–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004). Special issue on mathematics and image analysis

    Google Scholar 

  • Chambolle, A., Pock, T.: A First-order Primal-dual Algorithm for Convex Problems with Applications to Imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Pock, T.: A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions. SMAI J. Comput. Math. 1, 29–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recovery 9, 263–340 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. In: Acta Numerica, pp. 61–143. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  • Chan, T.F., Shen, J.J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  • Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, H., Zhang, X., Tai, X.-C., Yang, D.: Domain decomposition methods for nonlocal total variation image restoration. J. Sci. Comput. 60(1), 79–100 (2014)

    Article  MATH  Google Scholar 

  • Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imaging Sci. 8(1), 564–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, K., Tai, X.-C.: A nonlinear multigrid method for total variation minimization from image restoration. J. Sci. Comput. 33(2), 115–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (electronic) (2005)

    Google Scholar 

  • Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Imaging 1(1), 29–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, vol. 144. SIAM, Philadelphia (2015)

    Book  MATH  Google Scholar 

  • Duan, Y., Tai, X.-C.: Domain decomposition methods with graph cuts algorithms for total variation minimization. Adv. Comput. Math. 36(2), 175–199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, Y., Chang, H., Tai, X.-C.: Convergent non-overlapping domain decomposition methods for variational image segmentation. J. Sci. Comput. 69(2), 532–555 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. Int. J. Theory Pract. Inverse Probl. Inverse Methods Comput. Inversion Data 23(6), 2505–2526 (2007)

    MathSciNet  MATH  Google Scholar 

  • Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and l1-minimization. SIAM J. Numer. Anal. 47(5), 3397–3428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Fornasier, M., Langer, A., Schönlieb, C.-B.: Domain decomposition methods for compressed sensing. In: Proceedings of the International Conference of SampTA09, Marseilles, arXiv preprint arXiv:0902.0124 (2009)

    Google Scholar 

  • Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numerische Mathematik 116(4), 645–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Fornasier, M., Kim, Y., Langer, A., Schönlieb, C.: Wavelet decomposition method for L2/TV-image deblurring. SIAM J. Imaging Sci. 5(3), 857–885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Getreuer, P., Tong, M., Vese, L.A.: A variational model for the restoration of mr images corrupted by blur and rician noise. In: International Symposium on Visual Computing, pp. 686–698. Springer (2011)

    Google Scholar 

  • Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)

    Google Scholar 

  • Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller, M., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1∕L2 data-fidelity in image processing. SIAM J. Imaging Sci. 6(4), 2134–2173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller, M., Langer, A.: Surrogate functional based subspace correction methods for image processing. In: Domain Decomposition Methods in Science and Engineering XXI, pp. 829–837. Springer, Cham (2014)

    Google Scholar 

  • Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comput. 62(2), 456–481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller, M., Rautenberg, C.: On the density of classes of closed convex sets with pointwise constraints in sobolev spaces. J. Math. Anal. Appl. 426(1), 585–593 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller, M., Rautenberg, C.N.: Optimal selection of the regularization function in a weighted total variation model. Part I: Modelling and theory. J. Math. Imaging Vis. 59(3), 498–514 (2017)

    MATH  Google Scholar 

  • Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, vol. 15. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  • Langer, A.: Automated parameter selection for total variation minimization in image restoration. J. Math. Imaging Vis. 57(2), 239–268 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  • Langer, A.: Automated parameter selection in the L1-L2-TV model for removing Gaussian plus impulse noise. Inverse Probl. 33(7), 74002 (2017b)

    Article  Google Scholar 

  • Langer, A.: Locally adaptive total variation for removing mixed Gaussian–impulse noise. Int. J. Comput. Math. 96(2), 298–316 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Langer, A., Gaspoz, F.: Overlapping domain decomposition methods for total variation denoising. SIAM J. Numer. Anal. 57(3), 1411–1444 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Langer, A., Osher, S., Schönlieb, C.-B.: Bregmanized domain decomposition for image restoration. J. Sci. Comput. 54(2–3), 549–576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  • Lee, C.-O., Nam, C.: Primal domain decomposition methods for the total variation minimization, based on dual decomposition. SIAM J. Sci. Comput. 39(2), B403–B423 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, C.-O., Park, J.: Fast nonoverlapping block Jacobi method for the dual Rudin–Osher–Fatemi model. SIAM J. Imaging Sci. 12(4), 2009–2034 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, C.-O., Park, J.: A finite element nonoverlapping domain decomposition method with lagrange multipliers for the dual total variation minimizations. J. Sci. Comput. 81(3), 2331–2355 (2019b)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, C.-O., Lee, J.H., Woo, H., Yun, S.: Block decomposition methods for total variation by primal–dual stitching. J. Sci. Comput. 68(1), 273–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, C.-O., Nam, C., Park, J.: Domain decomposition methods using dual conversion for the total variation minimization with L1 fidelity term. J. Sci. Comput. 78(2), 951–970 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, C.-O., Park, E.-H., Park, J.: A finite element approach for the dual Rudin–Osher–Fatemi model and its nonoverlapping domain decomposition methods. SIAM J. Sci. Comput. 41(2), B205–B228 (2019b)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften, vol. 170. Springer (1971)

    Google Scholar 

  • Lions, P.-L.: On the Schwarz alternating method. I. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, pp. 1–42 (1988)

    Google Scholar 

  • Marini, L.D., Quarteroni, A.: A relaxation procedure for domain decomposition methods using finite elements. Numerische Mathematik 55(5), 575–598 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathew, T.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, vol. 61. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  • Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (electronic) (2002)

    Google Scholar 

  • Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: European Conference on Computer Vision, pp. 57–68. Springer (2008)

    Google Scholar 

  • Pock, T., Unger, M., Cremers, D., Bischof, H.: Fast and exact solution of total variation models on the gpu. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8. IEEE (2008)

    Google Scholar 

  • Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  • Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  • Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Schönlieb, C.-B.: Total variation minimization with an H−1 constraint. CRM Ser. 9, 201–232 (2009)

    MathSciNet  MATH  Google Scholar 

  • Schwarz, H.A.: Ãœber einige Abbildungsaufgaben. Journal für die reine und angewandte Mathematik 1869(70), 105–120 (1869)

    Article  MATH  Google Scholar 

  • Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Dordrecht (2004)

    MATH  Google Scholar 

  • Tai, X.-C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numerische Mathematik 93(4), 755–786 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Tai, X.-C., Tseng, P.: Convergence rate analysis of an asynchronous space decomposition method for convex minimization. Math. Comput. 71(239), 1105–1135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Tai, X.-C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput. 71(237), 105–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory, vol. 34. Springer Science & Business Media, Dordrecht (2006)

    MATH  Google Scholar 

  • Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Prog. 117(1–2), 387–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Vonesch, C., Unser, M.: A fast multilevel algorithm for wavelet-regularized image restoration. IEEE Trans. Image Process. 18(3), 509–523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Warga, J.: Minimizing Certain Concex Functions. J. Soc. Indust. Appl. Math. 11, 588–593 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Wright, S.J.: Coordinate descent algorithms. Math. Prog. 151(1), 3–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Tai, X.-C.: Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., Tai, X.-C., Wang, L.-L.: A two-level domain decomposition method for image restoration. Inverse Probl. Imaging 4(3), 523–545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., Chang, H.B., Qin, J.: Domain decomposition method for image deblurring. J. Comput. Appl. Math. 271, 401–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Langer, A. (2023). Domain Decomposition for Non-smooth (in Particular TV) Minimization. In: Chen, K., Schönlieb, CB., Tai, XC., Younes, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98661-2_104

Download citation

Publish with us

Policies and ethics