Skip to main content

Extracts from the Liverwort Bazzania trilobata with Potential Dermo-cosmetic Properties

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes


Bazzania trilobata (L.) Gray is a leafy liverwort from the family of Lepidoziaceae, well known for its antifungal properties. In this study, the 70% ethanol and methanol extracts of B. trilobata were investigated for new in vitro biological activities of cosmetic interest. The results showed that the total phenol content, the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity, and the anti-collagenase activity of the 70% ethanol extract were higher than for methanol. The methanol extract showed mild tyrosinase inhibitory activity and antimicrobial properties towards the Gram-positive bacteria Enterococcus faecalis. Lignans, coumarins, and bis-bibenzyls were the major classes of phenolic constituents tentatively identified in both extracts. In addition, a known drimenyl caffeate was identified in B. trilobata and its structure was confirmed by NMR spectroscopy. These results suggest that extracts from B. trilobata could be exploited as an interesting new source of natural active ingredients for cosmetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others



Homonuclear Correlation Spectroscopy




Gallic Acid Equivalents


Heteronuclear Multiple Bond Correlation


Half Maximal Inhibitory Concentration


Coupling Constant


Minimum Inhibitory Concentration


Tandem Mass Spectrometry


Nuclear Magnetic Resonance


Total Phenolic Content


Ultrahigh Performance Liquid Chromatography-High Resolution Mass Spectrometry


  1. Jackson MR, Bellemare J (2018) The potential for indirect negative effects of exotic insect species on a liverwort, Bazzania trilobata (Lepidoziaceae), mediated by the decline of a foundation tree species, Tsuga canadensis (Pinaceae) 1. J Torrey Bot Soc 145:183–194.

    Article  Google Scholar 

  2. Spjut RW, Suffness M, Cragg GM, Norris DH (1986) Mosses, liverworts, and hornworts screened for antitumor agents. Econ Bot 40:310–338.

    Article  Google Scholar 

  3. Tadesse M, Steiner U, Hindorf H, Dehne H-W (2004) Bryophyte extracts with activity against plant pathogenic fungi. SINET Ethiop J Sci 26:55–62.

    Article  Google Scholar 

  4. Scher JM, Speakman J-B, Zapp J, Becker H (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 65:2583–2888.

    Article  CAS  PubMed  Google Scholar 

  5. Frahn J-P, Frahm J-PP (2004) Recent developments of commercial products from bryophytes. Bryologist 107:277–283.[0277:RDOCPF]2.0.CO;2

    Article  Google Scholar 

  6. (2021) Lebermoosextrakt by Jean Pütz. Accessed 12 Oct 2021

  7. Burgess EJ, Larsen L, Perry NB (2000) A cytotoxic Sesquiterpene Caffeate from the liverwort Bazzania novae-zelandiae. J Nat Prod 63:537–539.

    Article  CAS  PubMed  Google Scholar 

  8. Liu N, Guo D-X, Wang S-Q et al (2012) Bioactive Sesquiterpenoids and Diterpenoids from the liverwort Bazzania albifolia. Chem Biodivers 9:2254–2261.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu R-L, Wang’ D, Xu’ L, Shi’ R-P (2006) Antibacterial activity in extracts of some bryophytes from China and Mongolia. J Hattori Bot Lab 100:603–615.

    Article  Google Scholar 

  10. Zheng S, Chang W, Zhang M et al (2018) Chiloscyphenol A derived from Chinese liverworts exerts fungicidal action by eliciting both mitochondrial dysfunction and plasma membrane destruction. Sci Rep 8:326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harinantenaina L, Asakawa Y (2007) Chemical constituents of Malagasy liverworts. 6. A Myltaylane Caffeate with nitric oxide inhibitory activity from Bazzania nitida. J Nat Prod 70:856–858.

    Article  CAS  PubMed  Google Scholar 

  12. Harinantenaina L, Quang DN, Nishizawa T et al (2007) Bioactive compounds from liverworts: inhibition of lipopolysaccharide-induced inducible NOS mRNA in RAW 264.7 cells by Herbertenoids and Cuparenoids. Phytomedicine 14:486–491.

    Article  CAS  PubMed  Google Scholar 

  13. Simonsen HT, Drew DP, Lunde C (2009) Perspectives on using Physcomitrella patens as an alternative production platform for thapsigargin and other terpenoid drug candidates. Perspect Med Chem 2009:1–6.

    Article  Google Scholar 

  14. Sabovljević MS, Sabovljević AD, Ikram NKK et al (2016) Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genet Resour 14:314–327.

    Article  CAS  Google Scholar 

  15. Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F (2021) Bryo-activities: a review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants 10(2):203.

  16. Horn A, Pascal A, Lončarević I et al (2021) Natural products from bryophytes: from basic biology to biotechnological applications. CRC Crit Rev Plant Sci 40:191–217.

    Article  Google Scholar 

  17. Marques RV, Sestito SE, Bourgaud F et al (2022) Anti-inflammatory activity of bryophytes extracts in LPS-stimulated RAW264.7 murine macrophages. Molecules 27:1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kusumawati I, Indrayanto G (2013) Natural antioxidants in cosmetics. In: Studies in natural products chemistry. Elsevier B.V., Oxford, UK, pp 485–505

    Google Scholar 

  19. Freitas-Rodríguez S, Folgueras AR, López-Otín C (2017) The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res 1864:2015–2025.

    Article  CAS  PubMed  Google Scholar 

  20. Marques RV, Guillaumin A, Abdelwahab AB et al (2021) Collagenase and Tyrosinase inhibitory effect of isolated constituents from the Moss Polytrichum formosum. Plan Theory 10:1271.

    Article  CAS  Google Scholar 

  21. Pillaiyar T, Manickam M, Namasivayam V (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32:403–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herman A (2019) Antimicrobial ingredients as preservative booster and components of self-preserving cosmetic products. Curr Microbiol 76:744–754.

    Article  CAS  PubMed  Google Scholar 

  23. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in enzymology. Academic, United States, pp 152–178

    Google Scholar 

  24. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205.

    Article  CAS  Google Scholar 

  25. Chajra H, Salwinski A, Guillaumin A et al (2020) Plant milking technology: an innovative and sustainable process to produce highly active extracts from plant roots. Molecules 25:4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kamkaen N, Mulsri N, Treesak C (2007) Screening of some tropical vegetables for anti-tyrosinase activity. Thai Pharm Health Sci J 2:15–19

    Google Scholar 

  27. (2006) ISO 20776–1:2006 Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices – Part 1: Reference method for testing the in vitro.

  28. Cockerill F (2013) Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  29. (2021) EUCAST: MIC determination. Accessed 17 Mar 2021

  30. Elmi A, Spina R, Risler A et al (2020) Evaluation of antioxidant and antibacterial activities, cytotoxicity of Acacia seyal Del Bark extracts and isolated compounds. Molecules 25:2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. (2021) EUCAST: Antifungal susceptibility testing. Accessed 17 Mar 2021

  32. Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsugawa H, Kind T, Nakabayashi R et al (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88:7946–7958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olszowy M (2019) What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol Biochem 144:135–143.

    Article  CAS  PubMed  Google Scholar 

  35. Cherubim DJ, Martins CV, Fariña L, Lucca RA (2020) Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol 19:33–37.

    Article  Google Scholar 

  36. Asakawa Y (2016) Polyphenols in bryophytes. In: Recent advances in polyphenol research. Wiley, Chichester, pp 36–66

    Chapter  Google Scholar 

  37. Martini U, Zapp J, Becker H (1998) Chlorinated macrocyclic bisbibenzyls from the liverwort Bazzania trilobata. Phytochemistry 47:89–96.

    Article  CAS  Google Scholar 

  38. Speicher A, Hollemeyer K, Heinzle E (2001) Rapid detection of chlorinated bisbibenzyls in Bazzania trilobata using MALDI-TOF mass spectrometry. Phytochemistry 57:303–306.

    Article  CAS  PubMed  Google Scholar 

  39. Martini U, Zapp J, Becker H (1998) Lignans from the liverwort Bazzania trilobata. Phytochemistry 49:1139–1146.

    Article  CAS  Google Scholar 

  40. Scher JM, Zapp J, Becker H (2003) Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 62:769–777.

    Article  CAS  PubMed  Google Scholar 

  41. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Chemical constituents of bryophytes. Bio- and chemical diversity, biological activity, and chemosystematics. Springer Vienna, Vienna

    Book  Google Scholar 

  42. Gahtori D, Chaturvedi P (2020) Bryophytes: a potential source of antioxidants. In: Bryophytes. IntechOpen, United Kingdom

    Google Scholar 

  43. Neha K, Haider MR, Pathak A, Yar MS (2019) Medicinal prospects of antioxidants: a review. Eur J Med Chem 178:687–704.

    Article  CAS  PubMed  Google Scholar 

  44. Njus D, Kelley PM, Tu Y-J, Schlegel HB (2020) Ascorbic acid: the chemistry underlying its antioxidant properties. Free Radic Biol Med 159:37–43.

    Article  CAS  PubMed  Google Scholar 

  45. Tran TQ, Phan HN, Bui AL, Quach PND (2020) Biological activities of in vitro liverwort Marchantia polymorpha L. extracts. Not Bot Hortic Agrobot Cluj-Napoca 48:826–838.

    Article  CAS  Google Scholar 

  46. Banerjee RD, Sen SP (1979) Antibiotic activity of bryophytes. Bryologist 82:141.

    Article  Google Scholar 

  47. Sawant UJ, Karadge BA (2010) Antimicrobial activity of some bryophytes (liverworts and a hornwort) from Kolhapur district. Pharm J 2:29–32.

    Article  Google Scholar 

  48. Nikolajeva V, Liepina L, Petrina Z et al (2012) Antibacterial activity of extracts from some bryophytes. Adv Microbiol 02:345–353.

    Article  CAS  Google Scholar 

  49. Kumar Tyagi A, Bukvicki D, Gottardi D et al (2013) Antimicrobial potential and chemical characterization of Serbian liverwort (Porella arboris-vitae): SEM and TEM observations. Evid-Based Complement Altern Med 2013:1–7.

    Article  Google Scholar 

  50. Negi K, Asthana AK, Chaturvedi P (2020) GC–MS analysis and antifungal activity of acetone extract of Conocephalum conicum (L) Underw (liverwort) against aflatoxins producing fungi. S Afr J Bot 131:384–390.

    Article  CAS  Google Scholar 

  51. Ludwiczuk A, Asakawa Y (2019) Bryophytes as a source of bioactive volatile terpenoids – a review. Food Chem Toxicol 132:110649.

    Article  CAS  PubMed  Google Scholar 

  52. Toyota M, Asakawa Y (1988) Sesquiterpenoids from the liverwort Bazzania fauriana. Phytochemistry 27:2155–2159.

    Article  CAS  Google Scholar 

  53. Zálešák F, Bon DJ-YD, Pospíšil J (2019) Lignans and Neolignans: plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 146:104284.

    Article  CAS  PubMed  Google Scholar 

  54. Carneiro A, Matos MJ, Uriarte E, Santana L (2021) Trending topics on Coumarin and its derivatives in 2020. Molecules 26:501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Asakawa Y, Ludwiczuk A, Novakovic M et al (2022) Bis-bibenzyls, Bibenzyls, and Terpenoids in 33 genera of the marchantiophyta (liverworts): structures, synthesis, and bioactivity. J Nat Prod 85:729–762.

    Article  CAS  PubMed  Google Scholar 

  56. Nandy S, Dey A (2020) Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: pharmacology, synthesis and structure-activity. DARU J Pharm Sci 28:701–734.

    Article  CAS  Google Scholar 

  57. Asakawa Y, Toyota M, Ueda A et al (1991) Sesquiterpenoids from the liverwort Bazzania japonica. Phytochemistry 30:3037–3040.

    Article  CAS  Google Scholar 

Download references


This research was supported by Marie Sklodowska-Curie Actions Innovative Training Networks under the Horizon 2020 program under grant agreement n° 765115 – MossTech. The authors thank Professor Nils Cronberg, Lund University, Sweden, for support in plant identification and collection. The NMR Center • DTU and the Villum Foundation are acknowledged for access to the 800 MHz spectrometers.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Henrik Toft Simonsen .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

(DOCX 867 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marques, R.V. et al. (2023). Extracts from the Liverwort Bazzania trilobata with Potential Dermo-cosmetic Properties. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics