Skip to main content

Lipidomics in Morbid Obesity

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Regardless of the various therapies, obesity is a challenge for the development of civilization and future generations. Obesity is associated with quantitative and qualitative changes in the serum fatty acid profile that have a significant impact on metabolism and overall health. In turn, changes in lipid metabolism in organs such as the liver and adipose tissue can generate changes in the fatty acid profile of the patients’ serum. Although the development of obesity is associated with lipid disorders, laboratory tests of lipids are limited to the so-called lipidogram. Many authors argue in favor of extending the scope of tested lipid compounds and determining changes in other, previously unexplored lipid groups. Depending on the structure of FA, the length of the aliphatic chain, the number of double bonds, additional substituents, other lipid components, and the source of the acid – all these factors will determine its vector of biological activity. Certainly, nowadays, comprehensive quantitative, structural, and functional analysis of specific lipid groups can lead to the identification of new lipid disorders in obesity. This chapter presents the alterations of fatty acid profile in obesity, including so far little studied groups of fatty acids like those containing cyclic groups or branched-chain fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gregor, M. F., & Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Annual Review of Immunology, 29, 415–445. https://doi.org/10.1146/annurev-immunol-031210-101322

    Article  CAS  PubMed  Google Scholar 

  2. Lyons, C., Kennedy, E., & Roche, H. (2016). Metabolic inflammation-differential modulation by dietary constituents. Nutrients, 8, 247. https://doi.org/10.3390/nu8050247

    Article  CAS  PubMed Central  Google Scholar 

  3. Levi, J., Segal, L., & St. Laurent, R., et al. F as in Fat: How obesity threatens America’s future 2012. https://www.rwjf.org/en/library/research/2012/09/f-as-in-fat%2D%2Dhow-obesity-threatens-america-s-future-2012.html. Accessed 22 Sep 2020.

  4. Moussa, H. N., Alrais, M. A., Leon, M. G., et al. (2016). Obesity epidemic: Impact from preconception to postpartum. Future Science OA, 2, FSO137. https://doi.org/10.4155/fsoa-2016-0035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castaner, O., Goday, A., Park, Y.-M., et al. (2018). The gut microbiome profile in obesity: A systematic review. International Journal of Endocrinology, 2018, 1–9. https://doi.org/10.1155/2018/4095789

    Article  Google Scholar 

  6. Li, L., Han, J., Wang, Z., et al. (2014). Mass spectrometry methodology in lipid analysis. International Journal of Molecular Sciences, 15, 10492–10507. https://doi.org/10.3390/ijms150610492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mika, A., Sledzinski, T., & Stepnowski, P. (2019). Current progress of lipid analysis in metabolic diseases by mass spectrometry methods. Current Medicinal Chemistry, 26, 60–103. https://doi.org/10.2174/0929867324666171003121127

    Article  CAS  PubMed  Google Scholar 

  8. Mika, A., & Sledzinski, T. (2017). Alterations of specific lipid groups in serum of obese humans: A review. Obesity Reviews, 18, 247–272. https://doi.org/10.1111/obr.12475

    Article  CAS  PubMed  Google Scholar 

  9. Yetukuri, L., Katajamaa, M., Medina-Gomez, G., et al. (2007). Bioinformatics strategies for lipidomics analysis: Characterization of obesity related hepatic steatosis. BMC Systems Biology, 1, 12. https://doi.org/10.1186/1752-0509-1-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yen, C. L. E., Nelson, D. W., & Yen, M. I. (2015). Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. Journal of Lipid Research, 56, 489–501. https://doi.org/10.1194/jlr.R052902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu, H.-H., & Kuo, C.-H. (2020). Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. Journal of Food and Drug Analysis, 28, 60–73. https://doi.org/10.1016/j.jfda.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  12. Brenna, J. T., Plourde, M., Stark, K. D., et al. (2018). Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. The American Journal of Clinical Nutrition, 108, 211–227. https://doi.org/10.1093/ajcn/nqy089

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teo, C. C., Chong, W. P. K., Tan, E., et al. (2015). Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC – Trends in Analytical Chemistry, 66, 1–18.

    Article  CAS  Google Scholar 

  14. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226, 497–509.

    Article  CAS  Google Scholar 

  15. Mika, A., Stepnowski, P., Kaska, L., et al. (2016). A comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight. Obesity, 24, 1669–1676. https://doi.org/10.1002/oby.21560

    Article  CAS  PubMed  Google Scholar 

  16. Dodds, E. D., McCoy, M. R., Rea, L. D., & Kennish, J. M. (2005). Gas chromatographic quantification of fatty acid methyl esters: Flame ionization detection vs electron impact mass spectrometry. Lipids, 40, 419–428. https://doi.org/10.1007/s11745-006-1399-8

    Article  CAS  PubMed  Google Scholar 

  17. Pakiet, A., Stepnowski, P., & Mika, A. (2020). Lipidomika w otyłości olbrzymiej. In I. Staneczko-Baranowska & B. Buszewski (Eds.), Bioanalityka w nauce i życiu. T. 1. Nowe wyzwania w bioanalizie klinicznej i ocenie naturalnych surowców leczniczych (pp. 113–128). Wydawnictwo Naukowe PWN.

    Google Scholar 

  18. Rauschert, S., Uhl, O., Koletzko, B., & Hellmuth, C. (2014). Metabolomic biomarkers for obesity in humans: A short review. Annals of Nutrition & Metabolism, 64, 314–324. https://doi.org/10.1159/000365040

    Article  CAS  Google Scholar 

  19. Barber, M. N., Risis, S., Yang, C., et al. (2012). Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One, 7, e41456. https://doi.org/10.1371/journal.pone.0041456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bray, G. A. (2004). Medical consequences of obesity. The Journal of Clinical Endocrinology and Metabolism, 89, 2583–2589. https://doi.org/10.1210/jc.2004-0535

    Article  CAS  PubMed  Google Scholar 

  21. Repetto, M., Semprine, J., & Boveris, A. (2012). Lipid peroxidation: Chemical mechanism, biological implications and analytical determination. In Lipid peroxidation. InTech.

    Google Scholar 

  22. Liu, X., Strable, M. S., & Ntambi, J. M. (2011). Stearoyl CoA desaturase 1: Role in cellular inflammation and stress. Advances in Nutrition, 2, 15–22.

    Article  Google Scholar 

  23. Mika, A., Kaska, L., Korczynska, J., et al. (2015). Visceral and subcutaneous adipose tissue stearoyl-CoA desaturase-1 mRNA levels and fatty acid desaturation index positively correlate with BMI in morbidly obese women. European Journal of Lipid Science and Technology, 117, 926–932. https://doi.org/10.1002/ejlt.201400372

    Article  CAS  Google Scholar 

  24. Kaska, L., Mika, A., Stepnowski, P., et al. (2014). The relationship between specific fatty acids of serum lipids and serum high sensitivity C- reactive protein levels in morbidly obese women. Cellular Physiology and Biochemistry, 34, 1101–1108. https://doi.org/10.1159/000366324

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y., & Huang, F. (2015). N-3 polyunsaturated fatty acids and inflammation in obesity: Local effect and systemic benefit. BioMed Research International, 2015, 1–16. https://doi.org/10.1155/2015/581469

    Article  CAS  Google Scholar 

  26. Simopoulos, A. P. (2016). An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8, 128.

    Article  Google Scholar 

  27. Petrus, P., Rosqvist, F., Edholm, D., et al. (2015). Saturated fatty acids in human visceral adipose tissue are associated with increased 11- β-hydroxysteroid-dehydrogenase type 1 expression. Lipids in Health and Disease, 14, 42. https://doi.org/10.1186/s12944-015-0042-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossner, S., Walldius, G., & Bjorvell, H. (1989). Fatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. International Journal of Obesity, 13, 603–612.

    CAS  PubMed  Google Scholar 

  29. Zong, G., Ye, X., Sun, L., et al. (2012). Associations of erythrocyte palmitoleic acid with adipokines, inflammatory markers, and the metabolic syndrome in middle-aged and older Chinese. The American Journal of Clinical Nutrition, 96, 970–976. https://doi.org/10.3945/ajcn.112.040204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hellmuth, C., Demmelmair, H., Schmitt, I., et al. (2013). Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One, 8, e74927. https://doi.org/10.1371/journal.pone.0074927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ameer, F., Scandiuzzi, L., Hasnain, S., et al. (2014). De novo lipogenesis in health and disease. Metabolism, 63, 895–902.

    Article  CAS  Google Scholar 

  32. Popeijus, H. E., Saris, W. H. M., & Mensink, R. P. (2008). Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. International Journal of Obesity, 32, 1076–1082.

    Article  CAS  Google Scholar 

  33. Jenkins, B., West, J., & Koulman, A. (2015). A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules, 20, 2425–2444. https://doi.org/10.3390/molecules20022425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakurada, K., Iwase, H., Takatori, T., et al. (1999). Identification of cis-9,10-methylenehexadecanoic acid in submitochondrial particles of bovine heart. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1437, 214–222. https://doi.org/10.1016/S1388-1981(99)00016-5

    Article  CAS  Google Scholar 

  35. Sledzinski, T., Mika, A., Stepnowski, P., et al. (2013). Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum. Lipids, 48, 839–848. https://doi.org/10.1007/s11745-013-3806-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wood, R., & Reiser, R. (1965). Cyclopropane fatty acid metabolism: Physical and chemical identification of propane ring metabolic products in the adipose tissue. Journal of the American Oil Chemists' Society, 42, 315–320. https://doi.org/10.1007/BF02540137

    Article  CAS  PubMed  Google Scholar 

  37. Sakurada, K., Iwase, H., Kobayashi, M., et al. (2000). cis-9,10-Methylenehexadecanoic acid inhibits contractility and actomyosin ATPase activity of guinea pig myocardium. Biochemical and Biophysical Research Communications, 274, 533–536. https://doi.org/10.1006/bbrc.2000.3181

    Article  CAS  PubMed  Google Scholar 

  38. Kanno, T., Yamamoto, H., Yaguchi, T., et al. (2006). The linoleic acid derivative DCP-LA selectively activates PKC-ε, possibly binding to the phosphatidylserine binding site. Journal of Lipid Research, 47, 1146–1156. https://doi.org/10.1194/jlr.M500329-JLR200

    Article  CAS  PubMed  Google Scholar 

  39. Dong, L., Vecchio, A. J., Sharma, N. P., et al. (2011). Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. The Journal of Biological Chemistry, 286, 19035–19046. https://doi.org/10.1074/jbc.M111.231969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mika, A., Stepnowski, P., Chmielewski, M., et al. (2016). Increased serum level of cyclopropaneoctanoic acid 2-hexyl in patients with hypertriglyceridemia-related disorders. Lipids, 51, 867–873. https://doi.org/10.1007/s11745-016-4141-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Czumaj, A., Mika, A., Chmielewski, M., & Sledzinski, T. (2018). Cyclopropaneoctanoic acid 2-hexyl upregulates the expression of genes responsible for lipid synthesis and release in human hepatic HepG2 cells. Lipids, 53, 345–351. https://doi.org/10.1002/lipd.12034

    Article  CAS  PubMed  Google Scholar 

  42. Mika, A., Sikorska-Wiśniewska, M., Małgorzewicz, S., et al. (2018). Potential contribution of monounsaturated fatty acids to cardiovascular risk in chronic kidney disease. Polish Arch Intern Med, 128, 755–763. https://doi.org/10.20452/pamw.4376

    Article  Google Scholar 

  43. Wahle, K. W., & Hare, W. R. (1982). The effect of dietary methyl branched-chain fatty acids on aspects of hepatic lipid metabolism in the rat. British Journal of Nutrition, 47, 61–67.

    Article  CAS  Google Scholar 

  44. Wang, H., Steffen, L. M., Vessby, B., et al. (2011). Obesity modifies the relations between serum markers of dairy fats and inflammation and oxidative stress among adolescents. Obesity, 19, 2404–2410. https://doi.org/10.1038/oby.2011.234

    Article  CAS  PubMed  Google Scholar 

  45. Guo, C., Sun, L., Chen, X., & Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8, 2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wallace, M., Green, C. R., Roberts, L. S., et al. (2018). Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nature Chemical Biology, 14, 1021–1031. https://doi.org/10.1038/s41589-018-0132-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neinast, M., Murashige, D., & Arany, Z. (2019). Branched chain amino acids. Annual Review of Physiology, 81, 139–164. https://doi.org/10.1146/annurev-physiol-020518-114455

    Article  CAS  PubMed  Google Scholar 

  48. Stradomska, T. J., & Tylki-Szymańska, A. (2009). Serum very-long-chain fatty acids levels determined by gas chromatography in the diagnosis of peroxisomal disorders in Poland. Folia Neuropathologica, 47, 306–313.

    CAS  PubMed  Google Scholar 

  49. Bentsen, H. (2017). Dietary polyunsaturated fatty acids, brain function and mental health. Microbial Ecology in Health and Disease, 28, 1281916. https://doi.org/10.1080/16512235.2017.1281916

    Article  PubMed Central  Google Scholar 

  50. Mika, A., & Stepnowski, P. (2016). Current methods of the analysis of immunosuppressive agents in clinical materials: A review. Journal of Pharmaceutical and Biomedical Analysis, 127, 207–231. https://doi.org/10.1016/j.jpba.2016.01.059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Writing of this chapter was partly supported by the National Science Centre of Poland (grant no. NCN 2016/21/D/NZ5/00219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Mika .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pakiet, A., Stepnowski, P., Mika, A. (2022). Lipidomics in Morbid Obesity. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_8

Download citation

Publish with us

Policies and ethics