Skip to main content

Volatile Organic Compounds Emitted by Biological Matrices

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

This chapter describes volatile organic metabolites emitted from bacteria and tissue and existing in breath, urine, saliva, and fecal samples. Additionally, the applications of different analytical techniques for fast detection of bacterial infection and diseases were discussed. Diversity of volatile metabolites are presented with focus on their origin and application of potential biomarkers for diseases screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ratiu, I. A., Ligor, T., Bocos-Bintintan, V., et al. (2017). Mass spectrometric techniques for the analysis of volatile organic compounds emitted from bacteria. Bioanalysis, 9, 069–1092.

    Article  CAS  Google Scholar 

  2. Moll, V. H., Bocoş-Binţinţan, V., Raţiu, I. A., et al. (2012). Control of dopants/modifiers in differential mobility spectrometry using a piezoelectric injector. Analyst, 137(6), 1458–1465.

    Article  CAS  PubMed  Google Scholar 

  3. Tellez, M. R., Schrader, K. K., & Kobaisy, M. (2001). Volatile components of the cyanobacterium Oscillatoria perornata (Skuja). Journal of Agricultural and Food Chemistry, 49, 5989–5992.

    Article  CAS  PubMed  Google Scholar 

  4. Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: The smell of small organisms. Natural Product Reports, 24, 814–842.

    Article  CAS  PubMed  Google Scholar 

  5. Bos, L. D., Sterk, P. J., & Schultz, M. J. (2013). Volatile metabolites of pathogens: A systematic review. PLoS Pathogens, e1003311.

    Google Scholar 

  6. Carroll, W., Lenney, W., Wang, T., et al. (2005). Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatric Pulmonology, 39, 452–456.

    Article  PubMed  Google Scholar 

  7. Ratiu, I. A., Ligor, T., Bocos-Bintintan, V., et al. (2017). The effect of growth medium on Escherichia coli pathway mirrored into GC/MS profiles. Journal of Breath Research, 11, 036012.

    Article  PubMed  CAS  Google Scholar 

  8. Labows, J. N., McGinley, K. J., Webster, G. F., et al. (1980). Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. Journal of Clinical Microbiology, 12(4), 521–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Audrain, B., Farag, M. A., Ryu, C. M., et al. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39(2), 222–233.

    Article  CAS  PubMed  Google Scholar 

  10. Phillips, M., Basa-Dalay, V., Bothamley, G., et al. (2010). Breath biomarkers of active pulmonary tuberculosis. Tuberculosis, 90, 145–151.

    Article  CAS  PubMed  Google Scholar 

  11. Nawrath, T., Mgode, G. F., Weetjens, B., et al. (2012). The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein Journal of Organic Chemistry, 8, 290–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raţiu, I. A., Bocoş-Binţinţan, V., Turner, M., et al. (2014). Discrimination of chemical profiles of some bacterial species by analyzing culture headspace air samples using TD-GC/MS. Current Analytical Chemistry, 10(4), 488–497.

    Article  CAS  Google Scholar 

  13. Buszewski, B., Ulanowska, A., Ligor, T., et al. (2008). Identification of volatile organic compounds secreted from cancer tissues and bacterial cultures. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 868, 88–94.

    Article  CAS  PubMed  Google Scholar 

  14. Scott-Thomas, A. J., Syhre, M., Pattemore, P. K., et al. (2010). 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulmonary Medicine, 10, 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shestivska, V., Španěl, P., Dryahina, K., et al. (2012). Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. Journal of Applied Microbiology, 113, 701–713.

    Article  CAS  PubMed  Google Scholar 

  16. Pakodi, F., Abdel-Salam, O. M., Debreceni, A., et al. (2000). Helicobacter pylori. One bacterium and a broad spectrum of human disease. An overview. Journal of Physiology, Paris, 94, 139–152.

    Article  CAS  PubMed  Google Scholar 

  17. Ratiu, I. A., Ligor, T., Bocos-Bintintan, V., et al. (2019). GC-MS application in determination of volatile profiles emitted by infected and uninfected human tissue. Journal of Breath Research, 13, 026003.

    Article  CAS  PubMed  Google Scholar 

  18. La, J. A., Lim, S., Park, H. J., et al. (2015). Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles. Analytica Chimica Acta, 933(24), 196–206.

    Google Scholar 

  19. Smith, D., Sovová, K., Dryahina, K., et al. (2016). Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. Journal of Breath Research, 10, 021002.

    Article  PubMed  Google Scholar 

  20. de Lacy, C. B., Amann, A., Al-Kateb, H., et al. (2014). A review of the volatiles from the healthy human body. Journal of Breath Research, 8, 014001.

    Article  CAS  Google Scholar 

  21. Hamilton-Kemp, T., Newman, M., Collins, R., et al. (2005). Production of the long-chain alcohols octanol, decanol and dodecanol by Escherichia coli. Current Microbiology, 51, 82–86.

    Article  CAS  PubMed  Google Scholar 

  22. Kubo, I., Muroi, H., & Kubo, A. (1995). Structural functions of antimicrobial long-chain alcohols and phenols. Bioorganic & Medicinal Chemistry, 3, 873–880.

    Article  CAS  Google Scholar 

  23. Syhre, M., & Chambers, S. T. (2008). The scent of Mycobacterium tuberculosis. Tuberculosis, 88, 317–323.

    Article  CAS  PubMed  Google Scholar 

  24. Syhre, M., Manning, L., Phuanukoonnon, S., et al. (2009). The scent of Mycobacterium tuberculosis – Part II breath. Tuberculosis, 89(4), 263–266.

    Article  CAS  PubMed  Google Scholar 

  25. Karami, N., Karimi, A., Aliahmadi, A., et al. (2017). Identification of bacteria using volatile organic compounds. Cellular and Molecular Biology (Noisy-le-Grand, France), 63(2), 112–121.

    Article  CAS  Google Scholar 

  26. Španěl, P., Sovová, K., Dryahina, K., et al. (2016). Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection? Journal of Breath Research, 10, 036013.

    Article  PubMed  CAS  Google Scholar 

  27. Ratiu, I. A., Bocos-Bintintan, V., Monedeiro, F., et al. (2020). An optimistic vision of future: Diagnosis of bacterial infections by sensing their associated volatile organic compounds. Critical Reviews in Analytical Chemistry, 50, 501–512.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, J., Bean, H. D., Kuo, Y. M., et al. (2010). Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. Journal of Clinical Microbiology, 48(12), 4426–4431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bean, H. D., Dimandja, J. M. D., & Hill, J. E. (2012). Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 901, 41–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ratiu, I. A., Bocos-Bintintan, V., Patrut, A., et al. (2017). Discrimination of bacteria by rapid sensing, their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Analytica Chimica Acta, 982, 209–217.

    Article  CAS  PubMed  Google Scholar 

  31. Thorn, R. M. S., Reynold, D. M., & Greenman, J. (2011). Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. Journal of Microbiological Methods, 84, 258–264.

    Article  CAS  PubMed  Google Scholar 

  32. Lough, F., Perry, J. D., Stanforth, S. P., et al. (2017). Detection of exogenous VOCs as a novel in vitro diagnostic technique for the detection of pathogenic bacteria. Trends in Analytical Chemistry, 87, 71–81.

    Article  CAS  Google Scholar 

  33. Storer, M. K., Hibbard-Melles, K., Davis, B., et al. (2011). Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS). Journal of Microbiological Methods, 87(1), 111–113.

    Article  CAS  PubMed  Google Scholar 

  34. James, A. G., Austin, C. J., Cox, D. S., et al. (2013). Microbiological and biochemical origins of human axillary odour. FEMS Microbiology Ecology, 83, 527–540.

    Article  CAS  PubMed  Google Scholar 

  35. Ara, K., Hama, M., Akiba, S., et al. (2006). Foot odor due to microbial metabolism and its control. Canadian Journal of Microbiology, 52, 357–364.

    Article  CAS  PubMed  Google Scholar 

  36. Bijland, L. R., Bomers, M. K., & Smulders, Y. M. (2013). Smelling the diagnosis: a review on the use of scent in diagnosing disease. The Netherlands Journal of Medicine, 71, 300–307.

    CAS  PubMed  Google Scholar 

  37. Graham, J. E. (2013). Bacterial volatiles and diagnosis of respiratory infections. Advances in Applied Microbiology, 82, 29–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chambers, S. T., Syhre, M., Murdoch, D. R., et al. (2009). Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Medical Mycology, 47, 468–476.

    Article  CAS  PubMed  Google Scholar 

  39. Probert, C. S. J., Jones, P. R. H., & Ratcliffe, N. M. (2004). A novel method for rapidly diagnosing the causes of diarrhea. Gut, 53, 58–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Milanowski, M., Pomastowski, P., Ligor, T., et al. (2017). Saliva - volatile biomarkers and profiles. Critical Reviews in Analytical Chemistry, 47, 251–266.

    Article  CAS  PubMed  Google Scholar 

  41. Buszewski, B., Kęsy, M., Ligor, T., & Amann, A. (2007). Human exhaled air analytics: biomarker of diseases. Biomedical Chromatography, 21, 553–566.

    Article  CAS  PubMed  Google Scholar 

  42. Buszewski, B., Ligor, T., Jezierski, T., et al. (2012). Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Analytical and Bioanalytical Chemistry, 404, 141–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Handa, H., Usuba, A., Maddula, S., et al. (2014). Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS One, e114555.

    Google Scholar 

  44. Zou, Y., Zhang, X., Chen, X., et al. (2014). Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomarkers, 14, 371–379.

    Article  CAS  PubMed  Google Scholar 

  45. Capuano, R., Santonico, M., Pennazza, G., et al. (2015). The lung cancer breath signature: A comparative analysis of exhaled breath and air sampled from inside the lungs. Scientific Reports. https://doi.org/10.1038/srep16491

  46. Peralbo-Molina, A., Calderón-Santiago, M., Priego-Capote, F., et al. (2016). Identification of metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate. Journal of Breath Research, 10(2), 026002.

    Article  CAS  PubMed  Google Scholar 

  47. Schallschmidt, K., Becker, R., Jung, C., et al. (2016). Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study. Journal of Breath Research, 10(2), 46007.

    Article  CAS  Google Scholar 

  48. Sakumura, Y., Koyama, Y., Tokutake, H., et al. (2017). Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors. https://doi.org/10.3390/s17020287

  49. Rudnicka, J., Kowalkowski, T., & Buszewski, B. (2019). Searching for selected VOCs in human breath samples as potential markers of lung cancer. Lung Cancer, 135, 123–129.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported within the project no. MNZ/01/1029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Buszewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ratiu, I.A., Ligor, T., Monedeiro, F., Milanowski, M., Rudnicka, J., Buszewski, B. (2022). Volatile Organic Compounds Emitted by Biological Matrices. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_13

Download citation

Publish with us

Policies and ethics