Skip to main content

Delphinidin: Sources, Biosynthesis, Bioavailability, Bioactivity, and Pharmacology

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

This chapter highlighted the sources, biosynthesis, physicochemical properties, absorption, metabolism, excretion, biological properties, clinical trials, human studies, marketable products, and patents of delphinidin. Briefly, anthocyanins belong to a flavonoid class and represent a huge group that naturally occurs as water-soluble compounds in plants. Delphinidin is an important compound from the anthocyanidins class responsible for the purple-colored pigment that occurs in berries, eggplant, roselle, and wine. Delphinidin is found in different glycosidic forms, such as delphinidin-3-glucoside, delphinidin-3-rutinoside, delphinidin-3-galactoside, delphinidin-3-sambubioside, and delphinidin-3-arabinoside. Delphinidin exhibits several biological activities by distinct and complex mechanisms. Finally, delphinidin is a promising bioactive compound that can be used for the development of nutraceuticals and food products for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACC:

Acetyl-CoA Carboxylase

AMPK:

adenosine monophosphate-activated protein kinase

AMPKα:

AMP-activated protein kinase α

BAX:

bcl-2-associated X-protein

BCL-2:

b-cell lymphoma 2

BCL-XL:

antiapoptotic protein

BCL-XL:

b-cell lymphoma-extra large

C/EBPα:

CCAAT/enhancer-binding protein alpha

CDK1:

B1-cyclin-dependent kinase 1

ERK1/2:

extracellular signal-regulated protein kinase

HCV:

hepatitis C virus

HO-1:

heme oxygenase-1

IL-17Α:

interleukin-17A

IL-6:

interleukin 6

IκB:

kinase

JNK1/2:

c-Jun N-terminal kinases 1/2

KEAP1:

Kelch-like ECH-associated protein 1

LC3-II:

standard marker for autophagosomes

MAPK:

mitogen-activated protein kinase

MCP-1:

monocyte chemoattractant protein-1

NF-κB:

nuclear factor kappa B

NOX-1:

NADPH oxidase 1

Nrf2:

nuclear factor (erythroid-derived 2)-like 2

p38:

mitogen-activated protein kinases

p47phox:

neutrophil cytosol factor 1

p65:

transcription factor RelA

PARP:

cleaved poly(ADP-ribose) polymerase N-acetylcysteine

PMA:

phorbol myristate acetate

PPARγ:

peroxisome proliferator-activated receptor gamma

Rac1:

ras-related C3 botulinum toxin substrate 1

SIRT1:

silent mating type information regulation 2 homolog 1

SREBP1:

sterol-regulatory element-binding protein 1

TGF-β:

transforming growth factor beta

TNF-α:

tumor necrosis factor-alpha

TUNEL:

terminal uridine nick-end labeling

References

  • Ahmed HM, Roy A, Wahab M, Ahmed M, Othman-Qadir G, Elesawy BH et al (2021) Applications of nanomaterials in agrifood and pharmaceutical industry. J Nanomater 2021:1

    Article  CAS  Google Scholar 

  • Aichinger G, Puntscher H, Beisl J, Kütt ML, Warth B, Marko D (2018) Delphinidin protects colon carcinoma cells against the genotoxic effects of the mycotoxin altertoxin II. Toxicol Lett 284:136–142

    Article  CAS  PubMed  Google Scholar 

  • Alvarado J, Schoenlau F, Leschot A, Salgad AM, Portales PV (2016a) Delphinol® standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Med 58(3 Suppl 1):1–6

    PubMed  Google Scholar 

  • Alvarado JL, Leschot A, Olivera-Nappa Á, Salgado A-M, Rioseco H, Lyon C, Vigil P (2016b) Delphinidin-rich maqui berry extract (Delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Res Int 2016

    Google Scholar 

  • Barkallah M, Nzoughet-Kouassi J, Simard G, Thoulouze L, Marze S, Ropers MH, Andriantsitohaina R (2021) Enhancement of the anti-angiogenic effects of delphinidin when encapsulated within small extracellular vesicles. Nutrients 13(12):4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomhoff R, Alexander G (2003) Use of anthocyanins in fish food. Patent no. WO2005009140A1

    Google Scholar 

  • Calland N, Sahuc M-E, Belouzard S, Pène V, Bonnafous P, Mesalam AA et al (2015) Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J Virol 89(19):10053–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho Lemos V, Reimer JJ, Wormit A (2019) Color for life: biosynthesis and distribution of phenolic compounds in pepper (Capsicum annuum). Agriculture 9(4):81

    Article  Google Scholar 

  • Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L (2019) The multifunctional benefits of naturally occurring delphinidin and its glycosides. J Agric Food Chem 67(41):11288–11306

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ge Z, Huang S, Zhou L, Zhai C, Chen Y et al (2020) Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging (Albany NY) 12(6):5362

    Article  PubMed  Google Scholar 

  • Chen D, Liu Y, Li J, Sun X, Gu J, He Y et al (2022a) Effect of soybean protein isolate-7s on delphinidin-3-O-glucoside from purple corn stability and their interactional characterization. Foods 11(7):895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang P, Gu M, Hou B, Zhang C, Zheng Y et al (2022b) Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Horticul Plant J 8(3):381–394

    Article  CAS  Google Scholar 

  • Colak N, Kurt-Celebi A, Gruz J, Strnad M, Hayirlioglu-Ayaz S, Choung MG et al (2022) The Phenolics and antioxidant properties of black and purple versus white eggplant cultivars. Molecules 27(8):2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condurache NN, Turturică M, Enachi E, Barbu V, Bahrim GE, Stănciuc N et al (2021) Impact of wall materials on physico-chemical properties and stability of eggplant peels anthocyanin hydrogels. Inventions 6(3):47

    Article  Google Scholar 

  • Cremonini E, Iglesias DE, Matsukuma KE, Hester SN, Wood SM, Bartlett M et al (2022) Supplementation with cyanidin and delphinidin mitigates high fat diet-induced endotoxemia and associated liver inflammation in mice. Food Funct 13(2):781–794

    Article  CAS  PubMed  Google Scholar 

  • da Silva APG (2021) Fighting coronaviruses with natural polyphenols. Biocatal Agric Biotechnol 37:102179

    Article  PubMed  PubMed Central  Google Scholar 

  • Davinelli S, Bertoglio JC, Zarrelli A, Pina R, Scapagnini G (2015) A randomized clinical trial evaluating the efficacy of an anthocyanin–maqui berry extract (Delphinol®) on oxidative stress biomarkers. J Am Coll Nutr 34(sup1):28–33

    Article  PubMed  Google Scholar 

  • de Almeida Paula D, Ramos AM, de Oliveira EB, Martins EMF, de Barros FAR, Vidigal MCTR et al (2018) Increased thermal stability of anthocyanins at pH 4.0 by guar gum in aqueous dispersions and in double emulsions W/O/W. Int J Biol Macromol 117:665–672

    Article  PubMed  Google Scholar 

  • de Pádua Lúcio K, Rabelo ACS, Araújo CM, Brandão GC, de Souza GHB, da Silva RG et al (2018) Anti-inflammatory and antioxidant properties of black mulberry (Morus nigra L.) in a model of LPS-induced sepsis. Oxid Med Cell Longev 2018:5048031

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Pino-García R, González-SanJosé ML, Rivero-Pérez MD, García-Lomillo J, Muñiz P (2017) The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Food Chem 221:1723–1732

    Article  PubMed  Google Scholar 

  • Eker ME, Aaby K, Budic-Leto I, Rimac Brnčić S, El SN, Karakaya S et al (2019) A review of factors affecting anthocyanin bioavailability: possible implications for the inter-individual variability. Foods 9(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Enache IM, Vasile AM, Enachi E, Barbu V, Stănciuc N, Vizireanu C (2020) Co-microencapsulation of anthocyanins from cornelian cherry fruits and lactic acid bacteria in biopolymeric matrices by freeze-drying: evidences on functional properties and applications in food. Polymers 12(4):906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evonik (2022) The best berries for anthocyanins, transformed into a high-load powder for functional foods. Anthocyanins for functional foods: a high-load powder extract – Evonik Industries, 25 May 2022, https://healthcare.evonik.com/en/nutraceuticals/health-ingredients/anthocyanins

  • Fang J (2014) Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: extensive presystemic metabolism reduces apparent bioavailability. J Agric Food Chem 62(18):3904–3911

    Article  CAS  PubMed  Google Scholar 

  • Gabetta B, Giorgi R (1991) Intermediates useful for the synthesis of delphinidin chloride. Patent no. US5070212A

    Google Scholar 

  • Ha HTN, Van Tai N, Thuy NM (2021) Physicochemical characteristics and bioactive compounds of new black cherry tomato (Solanum lycopersicum) varieties grown in Vietnam. Plan Theory 10(10):2134

    CAS  Google Scholar 

  • Harada G, Onoue S, Inoue C, Hanada S, Katakura Y (2018) Delphinidin-3-glucoside suppresses lipid accumulation in HepG2 cells. Cytotechnology 70(6):1707–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helkar PB, Sahoo AK, Patil NJ (2016) Review: food industry by-products used as a functional food ingredients. Int J Waste Res 6(3):1–6

    Google Scholar 

  • Heysieattalab S, Sadeghi L (2020) Effects of delphinidin on pathophysiological signs of nucleus basalis of Meynert lesioned rats as animal model of Alzheimer disease. Neurochem Res 45(7):1636–1646

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo J, Flores C, Hidalgo MA, Perez M, Yañez A, Quiñones L et al (2014) Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med 56(2 Suppl 3):1–7

    CAS  PubMed  Google Scholar 

  • Huang C-C, Hung C-H, Hung T-W, Lin Y-C, Wang C-J, Kao S-H (2019) Dietary delphinidin inhibits human colorectal cancer metastasis associating with upregulation of miR-204-3p and suppression of the integrin/FAK axis. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Hui X, Wu G, Han D, Stipkovits L, Wu X, Tang S et al (2020) The effects of bioactive compounds from blueberry and blackcurrant powders on the inhibitory activities of oat bran pastes against α-amylase and α-glucosidase linked to type 2 diabetes. Food Res Int 138:109756

    Article  CAS  PubMed  Google Scholar 

  • Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, Ahmad A (2022) Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Front Nutr 9:746881

    Article  PubMed  PubMed Central  Google Scholar 

  • Hüsunet M, İla H (2018) In vitro genotoxic and antigenotoxic effects of delphinidin chloride on human peripheral blood lymphocytes. Marmara Pharm J 22(2):209

    Article  Google Scholar 

  • Ichiyanagi T, Rahman MM, Kashiwada Y, Ikeshiro Y, Shida Y, Hatano Y et al (2004) Absorption and metabolism of delphinidin 3-O-β-d-glucopyranoside in rats. Free Radic Biol Med 36(7):930–937

    Article  CAS  PubMed  Google Scholar 

  • Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T (2006) Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J Agric Food Chem 54(18):6578–6587

    Article  CAS  PubMed  Google Scholar 

  • Ifie I, Abrankó L, Villa-Rodriguez JA, Papp N, Ho P, Williamson G, Marshall LJ (2018) The effect of ageing temperature on the physicochemical properties, phytochemical profile and α-glucosidase inhibition of Hibiscus sabdariffa (roselle) wine. Food Chem 267:263–270

    Article  CAS  PubMed  Google Scholar 

  • Iizuka Y, Ozeki A, Tani T, Tsuda T (2018) Blackcurrant extract ameliorates hyperglycemia in type 2 diabetic mice in association with increased basal secretion of glucagon-like peptide-1 and activation of AMP-activated protein kinase. J Nutr Sci Vitaminol 64(4):258–264

    Article  CAS  PubMed  Google Scholar 

  • Im N-K, Jang WJ, Jeong C-H, Jeong G-S (2014) Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J Med Food 17(8):855–861

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Chen M, Yi L, Chang H, Zhang T, Wang L et al (2014) Delphinidin-3-glucoside protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury by autophagy upregulation via the AMPK/SIRT1 signaling pathway. Mol Nutr Food Res 58(10):1941–1951

    Article  CAS  PubMed  Google Scholar 

  • Jokioja J, Percival J, Philo M, Yang B, Kroon PA, Linderborg KM (2021) Phenolic metabolites in the urine and plasma of healthy men after acute intake of purple potato extract rich in methoxysubstituted monoacylated anthocyanins. Mol Nutr Food Res 65(9):2000898

    Article  CAS  Google Scholar 

  • Kahle K, Kraus M, Scheppach W, Ackermann M, Ridder F, Richling E (2006) Studies on apple and blueberry fruit constituents: do the polyphenols reach the colon after ingestion? Mol Nutr Food Res 50(4–5):418–423

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Tani T, Terahara N, Tsuda T (2015) The anthocyanin delphinidin 3-rutinoside stimulates glucagon-like peptide-1 secretion in murine GLUTag cell line via the Ca2+/calmodulin-dependent kinase II pathway. PLoS One 10(5):e0126157

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M-H, Jeong Y-J, Cho H-J, Hoe H-S, Park K-K, Park Y-Y et al (2017) Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol Rep 37(2):777–784

    Article  CAS  PubMed  Google Scholar 

  • Lai YS, Li S, Tang Q, Li HX, Chen SX, Li PW et al (2016) The dark-purple tea cultivar ‘Ziyan’accumulates a large amount of delphinidin-related anthocyanins. J Agric Food Chem 64(13):2719–2726

    Article  CAS  PubMed  Google Scholar 

  • Lai D, Huang M, Zhao L, Tian Y, Li Y, Liu D et al (2019) Delphinidin-induced autophagy protects pancreatic β cells against apoptosis resulting from high-glucose stress via AMPK signaling pathway. Acta Biochim Biophys Sin 51(12):1242–1249

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Park YJ, Hwang SC, Kim KD, Moon DK, Kim DH (2018) Cytotoxic effects of delphinidin in human osteosarcoma cells. Acta Orthop Traumatol Turc 52(1):58–64

    Article  PubMed  Google Scholar 

  • Lee D-Y, Park Y-J, Song M-G, Kim DR, Zada S, Kim D-H (2020) Cytoprotective effects of delphinidin for human chondrocytes against oxidative stress through activation of autophagy. Antioxidants 9(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Han C, Yun L, Yang Y, Cao Y (2022) Transcriptomic and metabolomic analysis of the mechanism of temperature-regulated anthocyanin biosynthesis in purple asparagus spears. Sci Hortic 295:110858

    Article  CAS  Google Scholar 

  • Lin Y, Huang G, Zhang Q, Wang Y, Dia VP, Meng X (2020) Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biol Technol 162:111097

    Article  CAS  Google Scholar 

  • Long Q, Chen H, Yang W, Yang L, Zhang L (2021) Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells. Bioengineered 12(1):3837–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maante-Kuljus M, Rätsep R, Moor U, Mainla L, Põldma P, Koort A, Karp K (2020) Effect of vintage and viticultural practices on the phenolic content of hybrid winegrapes in very cool climate. Agriculture 10(5):169

    Article  CAS  Google Scholar 

  • Majumdar S, Srirangam R (2010) Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J Pharm Pharmacol 62(8):951–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marko D, Puppel N, Tjaden Z, Jakobs S, Pahlke G (2004) The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol Nutr Food Res 48(4):318–325

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Rodriguez AS, Guimarães M, Mateus N, de Freitas V, Ballinas-Casarrubias ML, Fuentes-Montero ME et al (2021) Disaccharide anthocyanin delphinidin 3-O-sambubioside from Hibiscus sabdariffa L.: Candida Antarctica lipase B-catalyzed fatty acid acylation and study of its color properties. Food Chem 344:128603

    Article  CAS  PubMed  Google Scholar 

  • Masheta DQ, Al-Azzawi SK (2018) Antioxidant and anti-inflammatory effects of delphinidin on glial cells and lack of effect on secretase enzyme. Paper presented at the IOP conference series: materials science and engineering

    Google Scholar 

  • Matsumoto H, Tominaga S, Kishi M, Kawakami T, Tokunaga T, Hirayama M (2000) Compositions for food, process for producing the same, and functional foods and drinks containing the same. Patent no. US8722126B2

    Google Scholar 

  • Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T (2001) Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem 49(3):1546–1551

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Ichiyanagi T, Iida H, Ito K, Tsuda T, Hirayama M, Konishi T (2006) Ingested delphinidin-3-rutinoside is primarily excreted to urine as the intact form and to bile as the methylated form in rats. J Agric Food Chem 54(2):578–582

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverria J (2019) The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front Pharmacol 10:1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair GM, Wang H, Dewitt DL, Krempin DW, Qian Y, Mody DK (2000) Dietary food supplement containing natural cyclooxygenase inhibitors. Patent no. WO2001015553B1

    Google Scholar 

  • Najafabadi NS, Sahari MA, Barzegar M, Esfahani ZH (2017) Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit. Radiat Phys Chem 130:62–68

    Article  CAS  Google Scholar 

  • Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH et al (2018) Anthocyanins in the management of metabolic syndrome: a pharmacological and biopharmaceutical review. Front Pharmacol 9:1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda N, Aida R, Sato S, Ohmiya A, Tanaka Y (2010) Method for production of chrysanthemum plant having delphinidin-containing petals. Patent no. CA2759258C

    Google Scholar 

  • Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R (2017) Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci Adv 3(7):e1602785

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurmi T, Mursu J, Heinonen M, Nurmi A, Hiltunen R, Voutilainen S (2009) Metabolism of berry anthocyanins to phenolic acids in humans. J Agric Food Chem 57(6):2274–2281

    Article  CAS  PubMed  Google Scholar 

  • Pal HC, Sharma S, Strickland LR, Agarwal J, Athar M, Elmets CA, Afaq F (2013) Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One 8(10):e77270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park M, Sharma A, Lee HJ (2019) Anti-adipogenic effects of delphinidin-3-O-β-glucoside in 3T3-L1 preadipocytes and primary white adipocytes. Molecules 24(10):1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra-Vargas M, Sandoval-Rodriguez A, Rodriguez-Echevarria R, Dominguez-Rosales JA, Santos-Garcia A, Armendariz-Borunda J (2018) Delphinidin ameliorates hepatic triglyceride accumulation in human HepG2 cells, but not in diet-induced obese mice. Nutrients 10(8):1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I (2019) Grown to be blue—antioxidant properties and health effects of colored vegetables. Part I: Root vegetables. Antioxidants 8(12):617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinela J, Prieto MA, Pereira E, Jabeur I, Barreiro MF, Barros L, Ferreira IC (2019) Optimization of heat-and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chem 275:309–321

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Cheng Q, Zhang Y, Yan W, Yi F, Shi F (2021) Transcriptomic and chemical analyses to identify candidate genes involved in color variation of sainfoin flowers. BMC Plant Biol 21(1):1–14

    Article  Google Scholar 

  • Roewer N, Broscheit J (2013) Delphinidin for combating melanoma cells. Patent no. WO2014090583A1

    Google Scholar 

  • Roewer N, Broscheit J (2016) Use of delphinidin against staphylococcus aureus. Patent no. EP2854553B1

    Google Scholar 

  • Sadilova E, Stintzing FC, Carle R (2006) Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Zeitschrift für Naturforschung C 61(7–8):527–535

    Article  CAS  Google Scholar 

  • Sauer R-S, Krummenacher I, Bankoglu EE, Yang S, Oehler B, Schöppler F et al (2021) Stabilization of delphinidin in complex with sulfobutylether-β-cyclodextrin allows for antinociception in inflammatory pain. Antioxid Redox Signal 34(16):1260–1279

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Choi HK, Kim YK, Lee HJ (2021) Delphinidin and its glycosides’ war on cancer: preclinical perspectives. Int J Mol Sci 22(21):11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdson GT, Robbins RJ, Collins TM, Giusti MM (2018) Impact of location, type, and number of glycosidic substitutions on the color expression of o-dihydroxylated anthocyanidins. Food Chem 268:416–423

    Article  CAS  PubMed  Google Scholar 

  • Sogo T, Terahara N, Hisanaga A, Kumamoto T, Yamashiro T, Wu S et al (2015) Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. Biofactors 41(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • Song SE, Jo HJ, Kim YW, Cho YJ, Kim JR, Park SY (2016) Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. J Pharmacol Sci 130(4):235–243

    Article  CAS  PubMed  Google Scholar 

  • Stanoeva JP, Stefova M, Andonovska KB, Vankova A, Stafilov T (2017) Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int J Food Prop 20(sup1):S863–S883

    Article  CAS  Google Scholar 

  • Sun B, Li F, Zhang X, Wang W, Shao J, Zheng Y (2022) Delphinidin-3-O-glucoside, an active compound of Hibiscus sabdariffa calyces, inhibits oxidative stress and inflammation in rabbits with atherosclerosis. Pharm Biol 60(1):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarantino A, Difonzo G, Disciglio G, Frabboni L, Paradiso VM, Gambacorta G, Caponio F (2022) Fresh pomegranate juices from cultivars and local ecotypes grown in southeastern Italy: comparison of physicochemical properties, antioxidant activity and bioactive compounds. J Sci Food Agric 102(3):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Tsiogkas SG, Mavropoulos Α, Skyvalidas DN, Patrikiou E, Ntavari N, Daponte AI et al (2022) Delphinidin diminishes in vitro interferon-γ and interleukin-17 producing cells in patients with psoriatic disease. Immunol Res 70(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Wang CH, Zhu LL, Ju KF, Liu JL, Li KP (2017) Anti-inflammatory effect of delphinidin on intramedullary spinal pressure in a spinal cord injury rat model. Exp Ther Med 14(6):5583–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RR, Schönlau F (2015) Nutraceutical and antioxidant effects of a delphinidin-rich maqui berry extract Delphinol®: a review. Minerva Cardioangiol 63(2 Suppl):1–12

    CAS  PubMed  Google Scholar 

  • Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54(11):4069–4075

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Zhu Y, Han B, Peng J, Deng X, Chen W et al (2021) Delphinidin induces cell cycle arrest and apoptosis in HER-2 positive breast cancer cell lines by regulating the NF-κB and MAPK signaling pathways. Oncol Lett 22(6):1–11

    Article  Google Scholar 

  • Xia H, Shen Y, Hu R, Wang J, Deng H, Lin L et al (2021) Methylation of MYBA1 is associated with the coloration in “manicure finger” grape skin. J Agric Food Chem 69(51):15649–15659

    Article  CAS  PubMed  Google Scholar 

  • Xie DY, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422(1):91–102

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang Y, Ren G, Yang R, Chen J, Xiang X, … Chen J (2020) Inhibitory effect of delphinidin on oxidative stress induced by H2O2 in HepG2 cells. Oxid Med Cell Long 2020

    Google Scholar 

  • Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M et al (2021) MYB-mediated regulation of anthocyanin biosynthesis. Int J Mol Sci 22(6):3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Shi Z, Reheman A, Jin JW, Li C, Wang Y et al (2012) Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: novel protective roles against cardiovascular diseases. PLoS One 7(5):e37323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Luo E, Liu X, Han B, Yu X, Peng X (2016) Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/HOTAIR signaling pathway. BMC Cancer 16(1):1–8

    Article  CAS  Google Scholar 

  • Yoon BI, Bae WJ, Choi YS, Kim SJ, Ha U, Hong S-H et al (2018) Anti-inflammatory and antimicrobial effects of anthocyanin extracted from black soybean on chronic bacterial prostatitis rat model. Chin J Integr Med 24(8):621–626

    Article  CAS  PubMed  Google Scholar 

  • Yue X, Zhao Y, Ma X, Jiao X, Fang Y, Zhang Z, Ju Y (2021) Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in cabernet sauvignon (Vitis vinifera L.) grapes. J Sci Food Agric 101(8):3214–3224

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hu J, Liu M, Shi Y, De Vos RC, Ruan J (2020) Stimulated biosynthesis of delphinidin-related anthocyanins in tea shoots reducing the quality of green tea in summer. J Sci Food Agric 100(4):1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Pan Y, Zhao Y, Ren M, Li Y, Lu G et al (2021) Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environ Toxicol 36(8):1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Zhao CL, Chen ZJ, Bai XS, Ding C, Long TJ, Wei FG, Miao KR (2014) Structure–activity relationships of anthocyanidin glycosylation. Mol Divers 18(3):687–700

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Priscilla Gomes da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

da Silva, A.P.G., Zia, S., John, O.D., de Souza, M.C., da Silva, L.C., Sganzela, W.G. (2023). Delphinidin: Sources, Biosynthesis, Bioavailability, Bioactivity, and Pharmacology. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics