Skip to main content

Cyanidin: Advances on Resources, Biosynthetic Pathway, Bioavailability, Bioactivity, and Pharmacology

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Anthocyanins are naturally occuring pigements belongs to the group of flavinoids, a sub class of polyphenol familly. Cyanidin (Velderrain-Rodríguez et al., Food Funct 5:189–197, 2014), malvidin (Mv), pelargonidin (Pg), delphinidin (Nonnecke et al., J Dairy Sci 97:5566–5579, 2014), petunidin (Pn), and peonidin (Pn) are the six glycosylated anthocyanidins. Cyanidin-3-glucoside (C3G) is a member of the anthocyanin family of dietary polyphenols, which are water-soluble pigments found in a wide range of fruits and vegetables. C3G is an anti-inflammatory and antioxidant anthocyanin found in legumes, black rice, and purple potatoes. The absorption and bioavailability of C3G and its metabolites have increased, and their interaction with gut microorganisms may boost their health effects. In vitro and in vivo studies demonstrate that C3G has strong antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anticancer, anti-inflammatory, cytoprotective, and anti-diabetic activities against oxidative stress-related illnesses. Resources, biosynthesis pathway, physicochemical properties, absorption, metabolism, and excretion, molecular mechanisms of action, pharmacology in animals, clinical trial and human research, toxicology and safety, marketed products, and patents of cyanidin are all covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Soliman NH, Awad S, Desouky MM (2020) Effect of digestive enzymes on the activity of camel-milk insulin. Int J Dairy Technol 73:341–344

    Article  CAS  Google Scholar 

  • Adisakwattana S, Charoenlertkul P, Yibchok-Anun S (2009) α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J Enzyme Inhib Med Chem 24:65–69

    Article  CAS  PubMed  Google Scholar 

  • Akkarachiyasit S, Sirichai A, Sumrit W (2009) Amylase inhibitory activity and antihyperglycemic effect of cyanidin and its derivatives. J Pharma Sci 31:45–49

    Google Scholar 

  • Aloud BM, Raj P, McCallum J, Kirby C, Louis XL, Jahan F, Yu L, Hiebert B, Duhamel TA, Wigle JT (2018) Cyanidin 3-O-glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats. Food Funct 9:3466–3480

    Article  CAS  PubMed  Google Scholar 

  • Amararathna M, Hoskin DW, Rupasinghe H (2020) Cyanidin-3-O-glucoside-rich haskap berry administration suppresses carcinogen-induced lung tumorigenesis in A/Jcr mice. Molecules 25:3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M (2020) The role of estrogen receptors in cardiovascular disease. Int J Mol Sci 21:4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardy G, Virsolvy A, Quignard J, Ravier M, Bertrand G, Dalle S, Cros G, Magous R, Richard S, Oiry C (2013) Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. Br J Pharmacol 169:1102–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barik SK, Russell WR, Moar KM, Cruickshank M, Scobbie L, Duncan G, Hoggard N (2020) The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. J Nutr Biochem 78:108325

    Article  CAS  PubMed  Google Scholar 

  • Bartak M, Lange A, Słońska A, Cymerys J (2020) Antiviral and healing potential of Sambucus nigra extracts. Rev Bionatura 5:1264–1270

    Article  Google Scholar 

  • Baster Z, Li L, Kukkurainen S, Chen J, Pentikäinen O, Győrffy B, Hytönen VP, Zhu H, Rajfur Z, Huang C (2020) Cyanidin-3-glucoside binds to Talin and modulates colon cancer cell adhesions and 3D growth. FASEB J 34:2227–2237

    Article  CAS  PubMed  Google Scholar 

  • Basudhar D (2011) Nitrogen oxide releasing prodrugs as antiinflammatory, anticancer and cardioprotective agents. The University of Arizona

    Google Scholar 

  • Brouillard R (1982) Chemical structure of anthocyanins. In: Anthocyanins as food colors, pp 1–40

    Google Scholar 

  • Burton-Freeman B, Sandhu A, Edirisinghe I (2016) Anthocyanins. Elsevier, Nutraceuticals

    Google Scholar 

  • Capozzi F, Bordoni A (2013) Foodomics: a new comprehensive approach to food and nutrition. Genes Nutr 8:1–4

    Article  CAS  PubMed  Google Scholar 

  • Caroline M, Philippe M, Farid C, Sandrine P 2017. Use of coconut water as extraction solvent

    Google Scholar 

  • Chaikof EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA, Mastracci TM, Mell M, Murad MH, Nguyen LL (2018) The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 67(2–77):2

    Article  PubMed  Google Scholar 

  • Chen C (2010) Cox-2’s new role in inflammation. Nat Chem Biol 6:401–402

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Yuan M, Ye Q, Wang X, Xu J, Shi G, Hu Z (2020) Cyanidin-3-O-glucoside inhibits epithelial-to-mesenchymal transition, and migration and invasion of breast cancer cells by upregulating Klf4. Food Nutr Res 64

    Google Scholar 

  • Chen X, Zhang W, Xu X (2021) Cyanidin-3-glucoside suppresses the progression of lung adenocarcinoma by downregulating Tp53I3 and inhibiting Pi3K/Akt/mtor pathway. World J Surg Oncol 19:1–12

    Article  Google Scholar 

  • Crommen S, Simon M-C (2017) Microbial regulation of glucose metabolism and insulin resistance. Genes 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am Clin Nutr 97:995–1003

    Article  CAS  Google Scholar 

  • Dannenberg AJ, Subbaramaiah K (2003) Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4:431–436

    Article  CAS  PubMed  Google Scholar 

  • Davinelli S, Bertoglio JC, Zarrelli A, Pina R, Scapagnini G (2015) A randomized clinical trial evaluating the efficacy of an anthocyanin–maqui berry extract (Delphinol®) on oxidative stress biomarkers. J Am Coll Nutr 34:28–33

    Article  PubMed  Google Scholar 

  • Di Giacomo C, Acquaviva R, Santangelo R, Sorrenti V, Vanella L, Volti GL, D’orazio N, Vanella A, Galvano F 2012. Effect of treatment with Cyanidin-3-O-β-D-Glucoside on rat ischemic/reperfusion brain damage. Evidence-based complementary and alternative medicine: ECAM

    Google Scholar 

  • Ding M, Feng R, Wang SY, Bowman L, Lu Y, Qian Y, Castranova V, Jiang B-H, Shi X (2006) Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 281:17359–17368

    Article  CAS  PubMed  Google Scholar 

  • Dong N, Xue C, Zhang L, Zhang T, Wang C, Bi C, Shan A (2020) Oleanolic acid enhances tight junctions and ameliorates inflammation in salmonella typhimurium-induced diarrhea in mice via the Tlr4/NF-κB and MAPK pathway. Food Funct 11:1122–1132

    Article  CAS  PubMed  Google Scholar 

  • Eguchi H, Matsunaga H, Onuma S, Yoshino Y, Matsunaga T, Ikari A (2021) Down-regulation of claudin-2 expression by cyanidin-3-glucoside enhances sensitivity to anticancer drugs in the spheroid of human lung adenocarcinoma A549 cells. Int J Mol Sci 22:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esselen M, Barth SW, Winkler S, Baechler S, Briviba K, Watzl B, Skrbek S, Marko D (2013) Anthocyanins suppress the cleavable complex formation by irinotecan and diminish its DNA-strand-breaking activity in the colon of Wistar rats. Carcinogenesis 34:835–840

    Google Scholar 

  • Fagone P, Patti F, Mangano K, Mammana S, Coco M, Touil-Boukoffa C, Chikovani T, Di Marco R, Nicoletti F (2013) Heme oxygenase-1 expression in peripheral blood mononuclear cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 261:82–86

    Article  CAS  PubMed  Google Scholar 

  • Feng R, Ni H-M, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin X-M (2007) Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem 282:13468–13476

    Article  CAS  PubMed  Google Scholar 

  • Filippa B, Linda D, Ronald K, Yoshikazu T 2011. Flavenoide methyl tranpherase from the torenia and its uses

    Google Scholar 

  • Fratantonio D, Cimino F, Molonia MS, Ferrari D, Saija A, Virgili F, Speciale A (2017) Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors. Biochim Biophys Mol Cell Biol Lip 1862:351–357

    CAS  Google Scholar 

  • Gan Y, Fu Y, Yang L, Chen J, Lei H, Liu Q (2020) Cyanidin-3-O-glucoside and cyanidin protect against intestinal barrier damage and 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis. J Med Food 23:90–99

    Article  CAS  PubMed  Google Scholar 

  • Georg B (2013) Pharmaceutical composition having synergistic action of direct catalase inhibitors and modulators of no metabolism or of extracellular superoxide anion production which lead to catalase destruction

    Google Scholar 

  • George TG, Robert SW, Lirandall AS (2007) Extractions and methods comprising elderberry species

    Google Scholar 

  • Grynberg K, Ma FY, Nikolic-Paterson DJ (2017) The JNK signaling pathway in renal fibrosis. Front Physiol 8:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindi C, Cloutier A, Gaudreau S, Zerif E, McDonald PP, Tatsiy O, Asselin C, Dupuis G, Gris D, Amrani A (2018) Role of the p38 MAPK/C/EBPβ pathway in the regulation of phenotype and IL-10 and IL-12 production by tolerogenic bone marrow-derived dendritic cells. Cell 7:256

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  • Hassimotto NMA, Moreira V, Nascimento NGD, Souto PCMDC, Teixeira C, Lajolo FM (2013) Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside. BioMed Res Int.

    Google Scholar 

  • Homoki JR, Nemes A, Fazekas E, Gyémánt G, Balogh P, Gál F, Al-Asri J, Mortier J, Wolber G, Babinszky L (2016) Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chem 194:222–229

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Chen L, Chen Y, Zhang Z, Wang X, Zhou B (2021) Cyanidin-3-glucoside regulates osteoblast differentiation via the ERK1/2 signaling pathway. ACS Omega 6:4759–4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang F, Zhao R, Xia M, Shen GX (2020) Impact of cyanidin-3-glucoside on gut microbiota and relationship with metabolism and inflammation in high fat-high sucrose diet-induced insulin resistant mice. Microorganisms 8:1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun JW, Chung HS (2004) Cyanidin and malvidin from Oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G2/M phase and induction of apoptosis. J Agric Food Chem 52:2213–2217

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakasam B, Vareed SK, Olson LK, Nair MG (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53:28–31

    Article  CAS  PubMed  Google Scholar 

  • Jayarathne S, Stull AJ, Park OH, Kim JH, Thompson L, Moustaid-Moussa N (2019) Protective effects of anthocyanins in obesity-associated inflammation and changes in gut microbiome. Mol Nutr Food Res 63:1900149

    Article  CAS  Google Scholar 

  • Jensen SR, Wheeler SE, Hvid H, Ahnfelt-Rønne J, Hansen BF, Nishimura E, Olsen GS, Brubaker PL (2017) Elucidating the biological roles of insulin and its receptor in murine intestinal growth and function. Endocrinology 158:2453–2469

    Article  CAS  PubMed  Google Scholar 

  • Jeon S, Han S, Lee J, Hong T, Yim D-S (2012) The safety and pharmacokinetics of cyanidin-3-glucoside after 2-week administration of black bean seed coat extract in healthy subjects. Korean J Physiol Pharmacol 16:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Kim J-Y, Jun H-J, Kim S-J, Lee J-H, Hoang MH, Kim HS, Chang HI, Hwang K-Y, Um S-J (2013) Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing hepatic lipid. Biochim Biophys Mol Cell Biol Lip 1831:698–708

    CAS  Google Scholar 

  • Jia Y, Wu C, Kim Y-S, Yang SO, Kim Y, Kim J-S, Jeong M-Y, Lee JH, Kim B, Lee S (2020) A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Commun Biol 3:1–10

    Article  Google Scholar 

  • Jiao X, Shen Y, Deng H, Zhang Q, Zhao J (2021) Cyanidin-3-O-galactoside from Aronia melanocarpa attenuates high-fat diet-induced obesity and inflammation via AMPK, STAT3, and NF-κB p65 signaling pathways in Sprague-Dawley rats. J Funct Foods 85:104616

    Article  CAS  Google Scholar 

  • Jongsomchai K, Leardkamolkarn V, Mahatheeranont S (2020) A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat Cell Biol 53:481–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan H, Rafael B, Maria H, Evelyn J (2010) Compositions that include anthocyanidins and methods of use

    Google Scholar 

  • Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang G-M, Choi HY, Cho S-G (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalifa I, Peng J, Jia Y, Li J, Zhu W, Yu-Juan X, Li C (2019) Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins. Int J Biol Macromol 123:10–19

    Article  CAS  PubMed  Google Scholar 

  • Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, Jouyaeian P, Mokaberi P, Yazdyani H, Amiri-Tehranizadeh Z, Saberi MR, Chamani J (2022) Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 119042:119042

    Article  Google Scholar 

  • Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  CAS  PubMed  Google Scholar 

  • Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold E (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lage NN, Carvalho MMDF, Guerra JFDC, Lopes JMM, Pereira RR, Rabelo ACS, Arruda VM, Pereira MDFA, Layosa MA, Noratto GD (2021) Jaboticaba (Myrciaria cauliflora) Peel supplementation prevents hepatic steatosis through Hypolipidemic effects and cholesterol metabolism modulation in diet-induced nonalcoholic fatty liver disease rat model. J Med Food 24:968–977

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    Article  CAS  Google Scholar 

  • Lazzarino G, Tavazzi B, Lorenzi F, Amorini AM, Giardina B, Di Pietro V (2007) Method for the preparation and use of an enriched cyanidine-so-beta-glucopyranoside extract and derivatives thereof from fruits and vegetables containing said anthocyanin and method for the purification and use of cyanidine-3-o-beta-glucopyranoside and derivatives thereof obtained. Google Patents

    Google Scholar 

  • Lee JS, Kim YR, Song IG, Ha S-J, Kim YE, Baek N-I, Hong EK (2015a) Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. Int J Mol Med 35:405–412

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Vance TM, Nam T-G, Kim D-O, Koo SI, Chun OK (2015b) Contribution of anthocyanin composition to total antioxidant capacity of berries. Plant Foods Hum Nutr 70:427–432

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhao J, Yan T, Mu J, Lin Y, Chen J, Deng H, Meng X (2021) Cyanidin-3-O-glucoside and cisplatin inhibit proliferation and downregulate the PI3K/AKT/mTOR pathway in cervical cancer cells. J Food Sci 86:2700–2712

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Liu X, He J, Shao Y, Liu J, Wang Z, Xia L, Han T, Wu P (2019) Cyanidin-3-glucoside induces mesenchymal to epithelial transition via activating Sirt1 expression in triple negative breast cancer cells. Biochimie 162:107–115

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Liang H, Guo Y, Yang D (2021) Cyanidin 3-O-galactoside: a natural compound with multiple health benefits. Int J Mol Sci 22:2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limbocker R, Mannini B, Ruggeri FS, Cascella R, Xu CK, Perni M, Chia S, Chen SW, Habchi J, Bigi A (2020) Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Commun Biol 3:1–10

    Article  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun S-C (2017) Nf-κB signaling in inflammation. Signal Transduct Target Ther 2:1–9

    Google Scholar 

  • Liu X, Zhang D, Hao Y, Liu Q, Wu Y, Liu X, Luo J, Zhou T, Sun B, Luo X (2018) Cyanidin curtails renal cell carcinoma tumorigenesis. Cell Physiol Biochem 46:2517–2531

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Ning S (2019) Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother Res 33:81–89

    Article  CAS  PubMed  Google Scholar 

  • Ma M-M, Li Y, Liu X-Y, Zhu W-W, Ren X, Kong G-Q, Huang X, Wang L-P, Luo L-Q, Wang X-Z (2015) Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Wu Y, Chen B, Yao Y, Wang Y, Bai H, Li C, Yang Y, Chen Y (2019) Cyanidin-3-O-β-glucoside attenuates allergic airway inflammation by modulating the IL-4Rα-STAT6 signaling pathway in a murine asthma model. Int Immunopharmacol 69:1–10

    Article  CAS  PubMed  Google Scholar 

  • Majumder M, Nandi P, Omar A, Ugwuagbo KC, Lala PK (2018) Ep4 as a therapeutic target for aggressive human breast cancer. Int J Mol Sci 19:1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchetti P, Bugliani M, De Tata V, Suleiman M, Marselli L (2017) Pancreatic beta cell identity in humans and the role of type 2 diabetes. Front Cell Dev Biol 5:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Marczylo TH, Cooke D, Brown K, Steward WP, Gescher AJ (2009) Pharmacokinetics and metabolism of the putative cancer chemopreventive agent cyanidin-3-glucoside in mice. Cancer Chemother Pharmacol 64:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Markus K, Melanie SD, Harry E, Hans-Jürgen N, Florian R, Michael R (2011) Method for producing a compound comprising anthocyane and corresponding compounds

    Google Scholar 

  • Mazzoni L, Perez-Lopez P, Giampieri F, Alvarez-Suarez JM, Gasparrini M, Forbes-Hernandez TY, Quiles JL, Mezzetti B, Battino M (2016) The genetic aspects of berries: from field to health. J Sci Food Agric 96:365–371

    Article  PubMed  Google Scholar 

  • Min S-W, Ryu S-N, Kim D-H (2010) Anti-inflammatory effects of black rice, cyanidin-3-O-β-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol 10:959–966

    Article  CAS  PubMed  Google Scholar 

  • Mirmalek S, Faraji S, Ranjbaran S, Aryan H, Arani H, Jangholi E, Marzouni H, Salimi-Tabatabaee S (2020) Cyanidin 3-glycoside induced apoptosis in MCF-7 breast cancer cell line. Arch Med Sci 16

    Google Scholar 

  • Mogalli R, Matsukawa T, Shimomura O, Isoda H, Ohkohchi N (2018) Cyanidin-3-glucoside enhances mitochondrial function and biogenesis in a human hepatocyte cell line. Cytotechnology 70:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, De Ferranti S, Després J-P, Fullerton HJ (2016) Heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation 133:e38–e360

    PubMed  Google Scholar 

  • Najjar RS, Feresin RG (2021) Protective role of polyphenols in heart failure: molecular targets and cellular mechanisms underlying their therapeutic potential. Int J Mol Sci 22:1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, Golenbock D, Gresnigt MS, Heneka MT, Hoffman HM (2017) A guiding map for inflammation. Nat Immunol 18:826–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonnecke B, McGill J, Ridpath J, Sacco R, Lippolis J, Reinhardt T (2014) Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci 97:5566–5579

    Article  CAS  PubMed  Google Scholar 

  • Obeng E (2020) Apoptosis (programmed cell death) and its signals-a review. Braz J Biol 81:1133–1143

    Article  Google Scholar 

  • Olivas-Aguirre FJ, Rodrigo-García J, Martínez-Ruiz NDR, Cárdenas-Robles AI, Mendoza-Díaz SO, Álvarez-Parrilla E, González-Aguilar GA, De La Rosa LA, Ramos-Jiménez A, Wall-Medrano A (2016) Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 21:1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang S, Chen W, Gaofeng Z, Changcheng L, Guoping T, Minyan Z, Yang L, Min Y, Luo J (2021) Cyanidin-3-O-β-glucoside protects against pulmonary artery hypertension induced by monocrotaline via the Tgf-β1/p38 MAPK/CREB signaling pathway. Mol Med Rep 23:1–12

    Article  Google Scholar 

  • Park K, Gu D, So H, Kim K, Lee S (2015) Dual role of cyanidin-3-glucoside on the differentiation of bone cells. J Dent Res 94:1676–1683

    Article  CAS  PubMed  Google Scholar 

  • Passamonti S, Vrhovsek U, Vanzo A, Mattivi F (2005) Fast access of some grape pigments to the brain. J Agric Food Chem 53:7029–7034

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Wan T, Wang S, Ye M, Qiu Y, Jiang R, Pang N, Huang Y, Zhou Y, Jiang X (2018) Cyanidin-3-O-β-glucoside regulates the activation and the secretion of adipokines from brown adipose tissue and alleviates diet induced fatty liver. Biomed Pharmacother 105:625–632

    Article  CAS  PubMed  Google Scholar 

  • Pereira SR, Almeida LM, Dinis TC (2019) Improving the anti-inflammatory activity of 5-aminosalicylic acid by combination with cyanidin-3-glucoside: an in vitro study. J Funct Foods 63:103586

    Article  CAS  Google Scholar 

  • Pérez-Pérez A, Vilariño-García T, Guadix P, Dueñas JL, Sánchez-Margalet V (2020) Leptin and nutrition in gestational diabetes. Nutrients 12:1970

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitsillou E, Liang J, Karagiannis C, Ververis K, Darmawan KK, Ng K, Hung A, Karagiannis TC (2020) Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput Biol Chem 89:107408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poligone B, Baldwin AS (2001) Positive and negative regulation of Nf-κB by cox-2: roles of different prostaglandins. J Biol Chem 276:38658–38664

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Yan LJ, Li YQ, Yang HT, Duan HY, Wu JT, Fan XW, Wang S-L (2018) Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of Ros-mediated apoptosis. Exp Ther Med 15:1959–1965

    CAS  PubMed  Google Scholar 

  • Rahman S, Mathew S, Nair P, Ramadan WS, Vazhappilly CG (2021) Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 29:1–17

    Article  Google Scholar 

  • Raj P, McCallum JL, Kirby C, Grewal G, Yu L, Wigle JT, Netticadan T (2017) Effects of cyanidin 3-0-glucoside on cardiac structure and function in an animal model of myocardial infarction. Food Funct 8:4089–4099

    Article  CAS  PubMed  Google Scholar 

  • Rasouli H, Hosseini-Ghazvini SM-B, Khodarahmi R (2019) Therapeutic potentials of the most studied flavonoids: highlighting antibacterial and antidiabetic functionalities. Stud Nat Prod Chem 60:85–122

    Article  Google Scholar 

  • Rusishvili M, Grisanti L, Laporte S, Micciarelli M, Rosa M, Robbins RJ, Collins T, Magistrato A, Baroni S (2019) Unraveling the molecular mechanisms of color expression in anthocyanins. Phys Chem Chem Phys 21:8757–8766

    Article  CAS  PubMed  Google Scholar 

  • Samarpita S, Ganesan R, Rasool M (2020) Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting Il-17A cytokine signalling in rheumatoid arthritis. Toxicol Appl Pharmacol 391:114917

    Article  CAS  PubMed  Google Scholar 

  • Scazzocchio B, Varì R, Filesi C, D’archivio M, Santangelo C, Giovannini C, Iacovelli A, Silecchia G, Volti GL, Galvano F (2011) Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 60:2234–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sébastien P, Pascal S, Thierry M (2015) Composition containing a mixture of plant extracts or a mixture of molecules contained in said plants, and use for controlling glucide and/or lipid metabolism

    Google Scholar 

  • Serra D, Almeida LM, Dinis TC (2016) Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and Ppar-γ: comparison with 5-aminosalicylic acid. Chem Biol Interact 260:102–109

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Chen J, Dai S, Wang J, Huang Z, Lv Z, Wang Q, Wu Q (2020) Cyanidin-related antidepressant-like efficacy requires PI3K/AKT/FoxG1/FGF-2 pathway modulated enhancement of neuronal differentiation and dendritic maturation. Phytomedicine 76:153269

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Lv Z-Y, Yin M-J, Chen J, Wang J, Wu Q-N (2021) The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxidative Med Cell Longev 2021:1

    Google Scholar 

  • Shi M, O’Keefe L, Simcocks AC, Su XQ, McAinch AJ (2018) The effect of cyanidin-3-O-β-glucoside and peptides extracted from yoghurt on glucose uptake and gene expression in human primary skeletal muscle myotubes from obese and obese diabetic participants. J Funct Foods 51:55–64

    Article  CAS  Google Scholar 

  • Shi C, Ji Z, Zhang J, Jia Z, Yang X (2022) Preparation and characterization of intelligent packaging film for visual inspection of tilapia fillets freshness using cyanidin and bacterial cellulose. Int J Biol Macromol 205:357–365

    Article  CAS  PubMed  Google Scholar 

  • Solverson P, Albaugh GP, Harrison DJ, Luthria DL, Baer DJ, Novotny JA (2022) High-dose administration of purified cyanidin-3-glucose or a blackberry extract causes improved mitochondrial function but reduced content in 3T3-L1 adipocytes. Food Front 3:276

    Article  CAS  Google Scholar 

  • Song J, Du L, Li L, Kalt W, Palmer LC, Fillmore S, Zhang Y, Zhang Z, Li X (2015) Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: a targeted quantitative proteomic investigation employing multiple reaction monitoring. J Proteome 122:1–10

    Article  CAS  Google Scholar 

  • Song N, Zhang L, Chen W, Zhu H, Deng W, Han Y, Guo J, Qin C (2016) Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the Appswe/PS1ΔE9 mouse model. Biochim Biophys Acta Mol Basis Dis 1862:1786–1800

    Article  CAS  Google Scholar 

  • Sorrenti V, Vanella L, Acquaviva R, Cardile V, Giofrè S, Di Giacomo C (2015) Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int J Oncol 47:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Suantawee T, Elazab ST, Hsu WH, Yao S, Cheng H, Adisakwattana S (2017) Cyanidin stimulates insulin secretion and pancreatic β-cell gene expression through activation of l-type voltage-dependent Ca2+ channels. Nutrients 9:814

    Article  PubMed  PubMed Central  Google Scholar 

  • Suantawee T, Thilavech T, Cheng H, Adisakwattana S (2020) Cyanidin attenuates methylglyoxal-induced oxidative stress and apoptosis in INS-1 pancreatic β-cells by increasing Glyoxalase-1 activity. Nutrients 12:1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target. Pharmacol Ther 207:107464

    Article  CAS  PubMed  Google Scholar 

  • Sun C-D, Zhang B, Zhang J-K, Xu C-J, Wu Y-L, Li X, Chen K-S (2012) Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J Med Food 15:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Li M, Zou F, Bai S, Jiang X, Tian L, Ou S, Jiao R, Bai W (2018) Protection of cyanidin-3-O-glucoside against acrylamide-and glycidamide-induced reproductive toxicity in leydig cells. Food Chem Toxicol 119:268–274

    Article  CAS  PubMed  Google Scholar 

  • Swami U, Rishi P, Soni SK (2017) Anti-diabetic, Hypolipidemic and Hepato-renal protective effect of a novel fermented beverage from Syzygium Cumini stem. Int J Pharm Sci Res 8:1336

    CAS  Google Scholar 

  • Tak PP, Firestein GS (2001) Nf-κB: a key role in inflammatory diseases. J Clin Invest 107:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takanori T, Toshihiko O, Yuki U, Hiromitsu A, Kouji U, Takatoshi K 2004. Adiponectin expression promoter

    Google Scholar 

  • Takanori T, Fumihiko H, Toshihiko O, Koji U, Hiromitsu A, Takatoshi K (2007) Medicament Cyanidine-3-Glycoside as an active agent fat support and diabetes

    Google Scholar 

  • Tan J, Li Y, Hou D-X, Wu S (2019) The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants 8:479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thilavech T, Adisakwattana S (2019) Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC Complement Altern Med 19:1–10

    Article  CAS  Google Scholar 

  • Thilavech T, Abeywardena MY, Dallimore J, Adams M, Adisakwattana S (2018) Cyanidin-3-rutinoside alleviates methylglyoxal-induced cardiovascular abnormalities in the rat. J Funct Foods 49:258–266

    Article  CAS  Google Scholar 

  • Tian J-L, Liao X-J, Wang Y-H, Si X, Shu C, Gong E-S, Xie X, Ran X-L, Li B (2019) Identification of cyanidin-3-arabinoside extracted from blueberry as a selective protein tyrosine phosphatase 1B inhibitor. J Agric Food Chem 67:13624–13634

    Article  CAS  PubMed  Google Scholar 

  • Toufektsian M-C, De Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, Mock H-P, Peterek S, Matros A, Petroni K (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138:747–752

    Article  CAS  PubMed  Google Scholar 

  • Trouillas P, Sancho-García JC, De Freitas V, Gierschner J, Otyepka M, Dangles O (2016) Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chem Rev 116:4937–4982

    Article  CAS  PubMed  Google Scholar 

  • Valcheva-Kuzmanova S, Kuzmanov K, Tancheva S, Belcheva A (2007) Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 29:101–106

    Article  CAS  PubMed  Google Scholar 

  • Velderrain-Rodríguez G, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala J, Chen CO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar G (2014) Phenolic compounds: their journey after intake. Food Funct 5:189–197

    Article  PubMed  Google Scholar 

  • Wallace TC, Giusti MM (2015) Anthocyanins. Adv Nutr 6:620–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace TC, Giusti MM (2019) Anthocyanins – nature’s bold, beautiful, and health-promoting colors, vol 8. Multidisciplinary Digital Publishing Institute

    Google Scholar 

  • Wang Y, Zhang D, Liu Y, Wang D, Liu J, Ji B (2015) The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. J Sci Food Agric 95:936–944

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fu X-T, Li D-W, Wang K, Wang X-Z, Li Y, Sun B-L, Yang X-Y, Zheng Z-C, Cho NC (2016) Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells. Neural Regen Res 11:795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang M, Wang Z, Guo Z, Wang Z, Chen Q (2020) Cyanidin-3-O-glucoside attenuates endothelial cell dysfunction by modulating miR-204-5p/SIRT1-mediated inflammation and apoptosis. Biofactors 46:803–812

    Article  CAS  PubMed  Google Scholar 

  • Webb MR, Min K, Ebeler SE (2008) Anthocyanin interactions with DNA: intercalation, topoisomerase I inhibition and oxidative reactions. J Food Biochem 32:576–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Ji X, Xue J, Gao Y, Zhu X, Xiao G (2021) Cyanidin-3-O-glucoside represses tumor growth and invasion in vivo by suppressing autophagy via inhibition of the JNK signaling pathways. Food Funct 12:387–396

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Cui H, Tian H, Zhang X, Ma L, Ramassamy C, Li J (2020) Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 10:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen H, Cui H, Tian H, Zhang X, Ma L, Ramassamy C, Li J (2021) Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 10:63

    Article  CAS  Google Scholar 

  • William GA, Iiimark M, Stephen P, Ravinder A (2019) Methods and systems for modulating hormones and related methods, agents and compositions

    Google Scholar 

  • Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Yano S, Chen J, Hisanaga A, Sakao K, He X, He J, Hou D-X (2017) Polyphenols from Lonicera caerulea L. berry inhibit LPS-induced inflammation through dual modulation of inflammatory and antioxidant mediators. J Agric Food Chem 65:5133–5141

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Mo J, Ni J, Xu Y, Su H, Xie J, Chen W (2020) Structure-based design of human pancreatic amylase inhibitors from the natural anthocyanin database for type 2 diabetes. Food Funct 11:2910–2923

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Perveen S, Ha TJ, Kim SY, Yoon SH (2015) Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+−induced mitochondrial depolarization and formation of reactive oxygen species. Brain Res 1606:9–20

    Article  CAS  PubMed  Google Scholar 

  • Yanyun Z, Simonsen G, Cavender J, Jungleslie FH (2021) Nano-cellulose compositions, coatings, and uses thereof

    Google Scholar 

  • Yao W, Luo G, Zhu G, Chi X, Zhang A, Xia Z, Hei Z (2014) Propofol activation of the Nrf2 pathway is associated with amelioration of acute lung injury in a rat liver transplantation model. Oxidative Medicine and Cellular Longevity

    Google Scholar 

  • Yao Y, Chen Y, Adili R, Mckeown T, Chen P, Zhu G, Li D, Ling W, Ni H, Yang Y (2017) Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein VI signaling and inhibits platelet activation and thrombus formation. J Nutr 147:1917–1925

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y.-L., Zhang, X.-D., Ya, F.-L., Chen, B.-L., Li, Q. & Yang, Y. 2018. Cyanidin-3-glucoside inhibits platelet-derived chemokines and their receptors on leukocytes of ApoE−/−mice. In: Journal of Sun Yat-sen University (medical sciences), pp 171–177

    Google Scholar 

  • Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  CAS  PubMed  Google Scholar 

  • You Y, Yuan X, Liu X, Liang C, Meng M, Huang Y, Han X, Guo J, Guo Y, Ren C (2017) Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. Mol Nutr Food Res 61:1700261

    Article  Google Scholar 

  • Zarghi A, Arfaei S (2011) Selective cox-2 inhibitors: a review of their structure-activity relationships. IJPR 10:655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wu J, Liu F, Tong L, Chen Z, Chen J, He H, Xu R, Ma Y, Huang C (2019) Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: an outlined review. Eur J Pharmacol 858:172500

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yuan Z, Feng L, Fang Y (2015) Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. J Plant Res 128:687–696

    Article  CAS  PubMed  Google Scholar 

  • Zhao L-Y, Chen J, Wang Z-Q, Shen R-M, Cui N, Sun A-D (2016) Direct acylation of cyanidin-3-glucoside with lauric acid in blueberry and its stability analysis. Int J Food Prop 19:1–12

    Article  CAS  Google Scholar 

  • Zhao C-L, Yu Y-Q, Chen Z-J, Wen G-S, Wei F-G, Zheng Q, Wang C-D, Xiao X-L (2017) Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem 214:119–128

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Chen J, Chu F, Zhu J, Jin T (2020) Inflammatory role of TLR-MyD88 signaling in multiple sclerosis. Front Mol Neurosci 314

    Google Scholar 

  • Zhou F-H, Deng X-J, Chen Y-Q, Ya F-L, Zhang X-D, Song F, Li D, Yang Y (2017) Anthocyanin cyanidin-3-glucoside attenuates platelet granule release in mice fed high-fat diets. J Nutr Sci Vitaminol 63:237–243

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Chen L, Ding D, Li Z, Cheng L, You Q, Zhang S (2021) Cyanidin-3-O-glucoside inhibits the β-catenin/MGMT pathway by upregulating miR-214-5p to reverse chemotherapy resistance in glioma cells. Sci Rep 12(1):7773

    Article  Google Scholar 

  • ФУКУИ Ю, Танака Ё (2010) Novel compound contained in blue rose

    Google Scholar 

  • アイデンバーガー,, ト. & アイデンバーガー,, ト (2013) Stabilized anthocyanin composition

    Google Scholar 

  • 김명옥, 신성철 & 정종일 (2012) Composition for treating or preventing neurological disorder comprising extract of black bean

    Google Scholar 

  • 이병영, 유정임, 강창수, 김병국, 정옥선 & 유빛나 (2013) Method of pogi-kimchi processing by utilize cyanidine-3-glucoside contents materials

    Google Scholar 

  • 이병영, 유정임, 강창수, 김병국, 정옥선 & 유빛나 (2015) Method of Radish Water-kimchi processing by utilize cyanidine-3-glucoside contents materials

    Google Scholar 

  • 이병영, 유정임, 김병국, 정옥선 & 유빛나 (2013) Method of baek-kimchi processing by utilize cyanidine-3-glucoside contents materials

    Google Scholar 

  • 페르노데트, 나., 레이먼, 던., 보토, 장.-마., 오거, 엘., 메스트르, 오. 르., 앵베르, 이. & 돔로그, 누 (2017) Aqueous extract of Prunus persica and method for preparing the same

    Google Scholar 

  • 小, 良., 関良宏, 小関伸, 佐々, 大., 木伸大, 佐々木, 長, 和., 澤和夫, 長澤正, 寺正, 行., 寺由, 行., 松葉, 紀., 松, 由., 葉晴香, 中村晴, 中村, 香., 阿部, 裕. & 阿部, 裕 (2010) Novel glycosyltransferases, novel glycosyltransferase genes and novel sugar donor compounds

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagar F. Forsan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Forsan, H.F., Awad, S.S. (2023). Cyanidin: Advances on Resources, Biosynthetic Pathway, Bioavailability, Bioactivity, and Pharmacology. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics