Skip to main content

Phloridzin: Advances on Resources, Biosynthetic Pathway, Bioavailability, Bioactivity, and Pharmacology

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Flavonoids are polyphenolic molecules that are produced as bioactive secondary metabolites in plants and are responsible for its color, taste, and biological effects. Fruit and vegetable foods high in beneficial phytochemicals such as flavonoids and phenols are commonly found in today’s healthy diet. Phloridzin (PZ) is a flavonoid that belongs to the dihydrochalcones subclass. PZ is a highly active phytochemical, possessing multiple bioactivities. This chapter gives an overview of recent advances in natural sources, physicochemical properties, biosynthesis, pharmacokinetics, bioavailability, biotransformation, pharmacological effects as well as related molecular mechanisms, clinical potentials, toxicity, and applications in food industries of PZ. This will pave the way for future deep PZ research. Although various plant species have been recognized as possessing phloridzin, PZ is mostly found in the Malus genus. Furthermore, PZ has been utilized to differentiate the chemotaxonomic status of rosaceous plant species. Poor bioavailability is a consequence of this compound’s high phase I and II metabolisms, which has been demonstrated to be a barrier for the PZ clinical use. PZ is deglycosylated into phloretins in the small intestine, and these dihydrochalcones are converted further by UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) which represent major phase II drug-metabolizing enzymes to yield phloretin glucuronides and phloretin sulfate glucuronides, respectively. PZ possesses various pharmacological effects such as antidiabetic, anticancer, anti-obesity, antioxidant, antiaging, and antimicrobial. In conclusion, PZ is a promising bioactive compound in clinic applications or as supplements in food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguiñiga-Sánchez I, Cadena-Íñiguez J, Santiago-Osorio E et al (2017) Chemical analyses and in vitro and in vivo toxicity of fruit methanol extract of Sechium edule var. nigrum spinosum. Pharm Biol 55:1638–1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Akashi M, Kida T, Ikumi Y, Yamashita S, Sakuma N (2008) Phlorizin derivative and method of its production. Japan, Patent No. JP2008120708A. Available: https://patents.google.com/patent/JP2008120708A/ja

  • Andlauer W, Kolb J, Fürst P (2004) Phloridzin improves absorption of genistin in isolated rat small intestine. Clin Nutr ESPEN 23:989–995

    Article  CAS  Google Scholar 

  • Antika LD, Lee E-J, Kim Y-H, Kang M-K, Park S-H, Kim DY, Oh H, Choi Y-J, Kang Y-H (2017) Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J Nutr Biochem 49:42–52

    Article  CAS  PubMed  Google Scholar 

  • Bartholomé R, Haenen G, Hollman PC et al (2010) Deconjugation kinetics of glucuronidated phase II flavonoid metabolites by β-glucuronidase from neutrophils. Drug Metab Pharmacokinet 25:379–387

    Article  PubMed  Google Scholar 

  • Bein A, Zilbershtein A, Golosovsky M, Davidov D, Schwartz B (2017) LPS induces hyper-permeability of intestinal epithelial cells. J Cell Physiol 232:381–390

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Karali E, Bagli E, Al-Maharik N, Morbidelli L, Ziche M, Adlercreutz H, Murphy C, Fotsis T (2012) The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth. Mol Cancer 11:1–11

    Article  Google Scholar 

  • Betz AL, Drewes LR, Gilboe DD (1975) Inhibition of glucose transport into brain by phlorizin, phloretin and glucose analogues. Biochim Biophys Acta 406:505–515

    Article  CAS  PubMed  Google Scholar 

  • Biegeleisen HI (1970) Phlorizin analogues and their use. US3523937A

    Google Scholar 

  • Boccia M, Kopf S, Baratti C (1999) Phlorizin, a competitive inhibitor of glucose transport, facilitates memory storage in mice. Neurobiol Learn Mem 71:104–112

    Article  CAS  PubMed  Google Scholar 

  • Burcelin R, Mrejen C, Decaux JF, De Mouzon SH, Girard J, Charron MJ (1998) In vivo and in vitro regulation of hepatic glucagon receptor mRNA concentration by glucose metabolism. J Biol Chem 273:8088–8093

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Li B, Yu F, Lu W, Zhang Z, Yin M, Gao H (2013) Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. J Diabetes Res 2013

    Google Scholar 

  • Cassidy A, Minihane A-M (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105:10–22

    Article  CAS  PubMed  Google Scholar 

  • Chang W-T, Huang W-C, Liou C-J (2012) Evaluation of the anti-inflammatory effects of phloretin and phlorizin in lipopolysaccharide-stimulated mouse macrophages. Food Chem 134:972–979

    Article  CAS  PubMed  Google Scholar 

  • Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi C-I (2016) Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules 21:1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong Y, Wu S, Han J, Chen J, Liu H, Sun Q, Wu Y, Fang Y (2016) Pharmacokinetics of homoplantaginin in rats following intravenous, peritoneal injection and oral administration. J Pharm Biomed Anal 129:405–409

    Article  CAS  PubMed  Google Scholar 

  • Crespy V, Aprikian O, Morand C, Besson C, Manach C, Demigné C, RéMéSy C (2001) Bioavailability of Phloretin and Phloridzin in Rats. J Nutr 131:3227–3230

    Article  CAS  PubMed  Google Scholar 

  • Dare AP, Greenwood DR, Hellens RP (2016) Methods and materials for manipulating phloridzin production. France, Patent No. WO2016016826A1. Available: https://patents.google.com/patent/WO2016016826A1/en#patentCitations

  • David-Silva A, Esteves JV, Morais MRP, Freitas HS, Zorn TM, Correa-Giannella ML, Machado UF (2020) Dual SGLT1/SGLT2 inhibitor phlorizin ameliorates non-alcoholic fatty liver disease and hepatic glucose production in type 2 diabetic mice. Diabetes Metab Syndr Obes 13:739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day AJ, Cañada FJ, Dı́Az JC, Kroon PA, Mclauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468:166–170

    Article  CAS  PubMed  Google Scholar 

  • Defronzo RA, Norton L, Abdul-Ghani M (2017) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 13:11–26

    Article  CAS  PubMed  Google Scholar 

  • Deng G, Wang J, Zhang Q, He H, Wu F, Feng T, Zhou J, Zou K, Hattori M (2012a) Hepatoprotective effects of phloridzin on hepatic fibrosis induced by carbon tetrachloride against oxidative stress-triggered damage and fibrosis in rats. Biol. Pharm 35:1118–1125

    Article  CAS  Google Scholar 

  • Deng Y-X, Shi Q-Z, Chen B, Zhang X-J, Liu S-Z, Qiu X-M (2012b) Comparative pharmacokinetics of baicalin in normal and the type 2 diabetic rats after oral administration of the Radix scutellariae extract. Fitoterapia 83:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Ehrenkranz J (2008) Preparation and use of phlorizin compositions. United States, Patent No. US20080096825A1. Available: https://patents.google.com/patent/US20080096825A1/en

  • Ehrenkranz JR, Lewis NG, Ronald Kahn C, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Wang Y, Yang M, Cao J, Khan A, Cheng G (2020) UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem 318:126512

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J (2021) Systematic review of phenolic compounds in apple fruits: compositions, distribution, absorption, metabolism, and processing stability. J Agric Food Chem 69:7–27

    Article  CAS  PubMed  Google Scholar 

  • Fernando W, Coyle K, Marcato P, Rupasinghe HV, Hoskin DW (2019) Phloridzin docosahexaenoate, a novel fatty acid ester of a plant polyphenol, inhibits mammary carcinoma cell metastasis. Cancer Lett 465:68–81

    Article  CAS  PubMed  Google Scholar 

  • Ferté L, Marino A, Battault S et al (2021) New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am J Physiol Heart Circ Physiol 320:H838–H853

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao S, Hu M (2010) Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev Med Chem 10:550–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatidis S, Meier A, Jilani K, Lang E, Zelenak C, Qadri SM, Lang F (2011) Phlorhizin protects against erythrocyte cell membrane scrambling. J Agric Food Chem 59:8524–8530

    Article  CAS  PubMed  Google Scholar 

  • Gaudout D, Megard D, Inisan C, Esteve C, Lejard F (2002) Phenolic fraction rich in phloridzine and its use as a cosmetic, food or nutraceutical agent. France, Patent No. FR2822466A1. Available: https://patents.google.com/patent/FR2822466A1/en

  • Gaudout D, Megard D, Inisan C, Esteve C, Lejard F (2006) Phloridzin-rich phenolic fraction and use thereof as a cosmetic, dietary or nutraceutical agent. United states, US 20060073223A1. Available: https://patents.google.com/patent/US7041322B2/en

  • Gaudout D, Megard D, Lejard F (2007) Use of a dihydrochalcone-rich phenolic fraction in a cosmetic treatment. United States, Patent No. US7285298B2. Available: https://patents.google.com/patent/US7285298

  • Ghezzi C, Loo DDF, Wright EM (2018) Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61:2087–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosch C, Halbwirth H, Kuhn J, Miosic S, Stich K (2009) Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Sci 176:223–231

    Article  CAS  Google Scholar 

  • Gosch C, Halbwirth H, Stich K (2010) Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71:838–843

    Article  CAS  PubMed  Google Scholar 

  • Groth AD, Contreras MT, Kado-Fong HK, Nguyen KQ, Thomasy SM, Maggs DJ (2014) In vitro cytotoxicity and antiviral efficacy against feline herpesvirus type 1 of famciclovir and its metabolites. Vet Ophthalmol 17:268–274

    Article  CAS  PubMed  Google Scholar 

  • Hirose M, Shibazaki T, Nakada T et al (2014) Phlorizin prevents electrically-induced ventricular tachyarrhythmia during ischemia in langendorff-perfused guinea-pig hearts. Biol Pharm 37:1168–1176

    Article  CAS  Google Scholar 

  • Hmid I, Elothmani D, Hanine H, Oukabli A, Mehinagic E (2017) Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab J Chem 10:S2675–S2684

    Article  CAS  Google Scholar 

  • Illam SP, Hussain A, Elizabeth A, Narayanankutty A, Raghavamenon AC (2019) Natural combination of phenolic glycosides from fruits resists pro-oxidant insults to colon cells and enhances intrinsic antioxidant status in mice. Toxicol Rep 6:703–711

    Article  Google Scholar 

  • Jinfeng B, Mo Z, Jinkai Z, Dandan H, Mingyue X, Ye X (2017) A kind of method of phloridzin in aqueous two-phase extraction pomace, China CN104592323B

    Google Scholar 

  • Jung E, Lee J, Huh S, Lee J, Kim Y-S, Kim G, Park D (2009) Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Food Chem Toxicol 47:2436–2440

    Article  CAS  PubMed  Google Scholar 

  • Kahle K, Huemmer W, Kempf M, Scheppach W, Erk T, Richling E (2007) Polyphenols are intensively metabolized in the human gastrointestinal tract after apple juice consumption. J Agric Food Chem 55(10605–10):614

    Google Scholar 

  • Kaigai D, Guorong L, Tianyan F, Ping L, Ying Y, Hongye C, Junzhi W (2019) A kind of separation and purification method of phlorizin in crabapple water extract. China, Patent No. CN109503683A. Available: https://patents.google.com/patent/CN109503683A/zh

  • Kamdi SP, Raval A, Nakhate KT (2021a) Phloridzin ameliorates type 2 diabetes-induced depression in mice by mitigating oxidative stress and modulating brain-derived neurotrophic factor. J Diabetes Metab Disord 20:1–8

    Article  Google Scholar 

  • Kamdi SP, Raval A, Nakhate KT (2021b) Phloridzin attenuates lipopolysaccharide-induced cognitive impairment via antioxidant, anti-inflammatory and neuromodulatory activities. Cytokine 139:155408

    Article  CAS  PubMed  Google Scholar 

  • Kanda H, Kaneda T, Kawaguchi A, Sasaki N, Tajima T, Urakawa N, Shimizu K, Suzuki H (2017) Phloridzin inhibits high K+-induced contraction via the inhibition of sodium–glucose cotransporter 1 in rat ileum. J Vet Med Sci 16–0560

    Google Scholar 

  • Khalid S, Ain H, Rasool T, Naz T (2018) A review on the pharmacological importance of phloridzin and its conjugated analogues. Pharmacologyonline 3:324–336

    Google Scholar 

  • Khalifa MM, Bakr AG, Osman AT (2017) Protective effects of phloridzin against methotrexate-induced liver toxicity in rats. Biomed Pharmacother 95:529–535

    Article  CAS  PubMed  Google Scholar 

  • Khanam S, Mishra A, Shahid A, Pujari NM (2021) Therapeutic indication of phloridzin: a new Gleam for metabolic disorders. Phytomedicine Plus 100:200

    Google Scholar 

  • Kobori M, Masumoto S, Akimoto Y, Oike H (2012) Phloridzin reduces blood glucose levels and alters hepatic gene expression in normal BALB/c mice. Food Chem Toxicol 50:2547–2553

    Article  CAS  PubMed  Google Scholar 

  • Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J (2020) Flavonoids as anticancer agents. Nutrients 12:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Sinha K, Sharma R, Purohit R, Padwad Y (2019) Zootecnica e Nutrizione Animale Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Exp Cell Res 383:111480

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Dudonné S, Dubé P et al (2017) Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis. Food Chem 234:486–493

    Article  CAS  PubMed  Google Scholar 

  • Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248:8170–8173

    Article  CAS  PubMed  Google Scholar 

  • Leveen HH, Leveen RF (1992) Treatment of acne. Canada, Patent No. US5110801A. Available: https://patents.google.com/patent/US5110801A/en

  • Leveen HH, Leveen RF, Leveen EG (1989) Treatment of cancer with phlorizin and its derivatives. United states, Patent No. US4840939A. Available: https://patents.google.com/patent/US4840939A/en

  • Leveen HH, Leveen EG, Leveen RF (1993) Use of phlorizin or its derivatives in combination with a chemotherapeutic agent for the treatment of cancer. Europian, Patent No. EP0172721B1. Available: https://patents.google.com/patent/EP0172721B1/en

  • Li Y, Lizhu Z, Yao G, Guizhen L (2021) Method for preparing phlorizin mixed hypoglycemic preparation, China. Patent No. CN112843009A. Available: https://patents.google.com/patent/CN112843009A/en?oq=CN112843009A+China

  • Liaudanskas M, Viškelis P, Raudonis R, Kviklys D, Uselis N, Janulis V (2014, 2014) Phenolic composition and antioxidant activity of Malus domestica leaves. Sci World J:306217

    Google Scholar 

  • Londzin P, Siudak S, Cegieła U, Pytlik M, Janas A, Waligóra A, Folwarczna J (2018) Phloridzin, an apple polyphenol, exerted unfavorable effects on bone and muscle in an experimental model of type 2 diabetes in rats. Nutrients 10:1701

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes LAA, Dos Santos RJB, Magnani M, De Souza EL, De Siqueira-Júnior JP (2017) Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 107:193–197

    Article  CAS  PubMed  Google Scholar 

  • Loree JF, Morel P (2008) Process for extracting phloridzine from apple pests, France FR2906145B1

    Google Scholar 

  • Lorenz-Meyer H, Blum A, Haemmerli H, Semenza G (1972) A second enzyme defect in acquired lactase deficiency: lack of small-intestinal phlorizin-hydrolase. Eur J Clin Investig 2:326–331

    Article  CAS  Google Scholar 

  • Lu WD, Li BY, Yu F, Cai Q, Zhang Z, Yin M, Gao HQ (2012) Quantitative proteomics study on the protective mechanism of phlorizin on hepatic damage in diabetic db/db mice. Mol Med Rep 5:1285–1294

    CAS  PubMed  Google Scholar 

  • Lv Q, Lin Y, Tan Z et al (2019) Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on α-glucosidase in vitro. Food Funct 10:2881–2887

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Prasanna G, Jiang L, Jing P (2019) Molecular interaction of cyanidin-3-O-glucoside with ovalbumin: insights from spectroscopic, molecular docking and in vitro digestive studies. J Biomol Struct Dyn 38:1858–1867

    PubMed  Google Scholar 

  • Makarova E, Górnaś P, Konrade I, Tirzite D, Cirule H, Gulbe A, Pugajeva I, Seglina D, Dambrova M (2015) Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: a preliminary study. J Sci Food Agric 95:560–568

    Article  CAS  PubMed  Google Scholar 

  • Marchetti S, Mazzanti R, Beijnen JH, Schellens JH (2007) Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist 12:927–941

    Article  PubMed  Google Scholar 

  • Marks SC, Mullen W, Borges G, Crozier A (2009) Absorption, metabolism, and excretion of cider dihydrochalcones in healthy humans and subjects with an ileostomy. J Agric Food Chem 57:2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Masumoto S, Akimoto Y, Oike H, Kobori M (2009) Dietary phloridzin reduces blood glucose levels and reverses Sglt1 expression in the small intestine in streptozotocin-induced diabetic mice. J Agric Food Chem 57:4651–4656

    Article  CAS  PubMed  Google Scholar 

  • Mather A, Pollock C (2010) Renal glucose transporters: novel targets for hyperglycemia management. Nat Rev Nephrol 6:307–311

    Article  CAS  PubMed  Google Scholar 

  • Mei X, Zhang X, Wang Z, Gao Z, Liu G, Hu H, Zou L, Li X (2016) Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) mice. J Agric Food Chem 64:7502–7511

    Article  CAS  PubMed  Google Scholar 

  • Monge P, Solheim E, Scheline R (1984) Dihydrochalcone metabolism in the rat: phloretin. Xenobiotica 14:917–924

    Article  CAS  PubMed  Google Scholar 

  • Moradi-Marjaneh R, Paseban M, Sahebkar A (2019) Natural products with SGLT2 inhibitory activity: possibilities of application for the treatment of diabetes. Phytother Res 33:2518–2530

    Article  CAS  PubMed  Google Scholar 

  • Mustafa AM, Abouelenein D, Acquaticci L et al (2021) Effect of roasting, boiling, and frying processing on 29 polyphenolics and antioxidant activity in seeds and shells of sweet chestnut (Castanea sativa Mill.). Plants 10:2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa AM, Angeloni S, Abouelenein D, Acquaticci L, Xiao J, Sagratini G, Maggi F, Vittori S, Caprioli G (2022b) A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem 367:130743

    Article  CAS  PubMed  Google Scholar 

  • Mustafa AM, Mazzara E, Abouelenein D et al (2022a) Optimization of solvent-free microwave-assisted hydrodiffusion and gravity extraction of Morus nigra L. fruits maximizing polyphenols, sugar content, and biological activities using central composite design. Pharmaceuticals 15:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafian M, Jahromi MZ, Nowroznejhad MJ, Khajeaian P, Kargar MM, Sadeghi M, Arasteh A (2012) Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol Biol Rep 39:5299–5306

    Article  CAS  PubMed  Google Scholar 

  • Nkuimi Wandjou JG, Mevi S, Sagratini G et al (2020) Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of central Italy (Mela Rosa dei Monti Sibillini). Plants 9:9

    Article  Google Scholar 

  • Oleszek M, Pecio Ł, Kozachok S, Lachowska-Filipiuk Ż, Oszust K, Frąc M (2019) Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species – In vitro experiments. Toxins 11:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio H, Bautista R, Rios A, Franco M, Arellano A, Vargas-Robles H, Romo E, Escalante B (2010) Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats. J Nephrol 23:541–546

    PubMed  Google Scholar 

  • Park J, Kwon O, Cho SY, Cho MC, Paick J-S, Kim SW (2019) Comparison of improving effects for diabetic erectile dysfunction according to the anti-glycemic agents: phlorizin and insulin. World J Mens Health 37:210–218

    Article  PubMed  Google Scholar 

  • Pei F, Li B-y, Zhang Z, Yu F, Li X-l, Cai Q, Gao H-q, Shen L (2014) Beneficial effects of phlorizin on diabetic nephropathy in diabetic db/db mice. J Diabetes Complicat 28:596–603

    Article  Google Scholar 

  • Prabhakar P, Ahmed ABA, Chidambaram SB (2020) The role of phloridzin and its possible potential therapeutic effect on Parkinson’s disease. Int J Nutr Pharmacol Neurol Dis 10:69

    CAS  Google Scholar 

  • Puel C, Quintin A, Mathey J, Obled C, Davicco M-J, Lebecque P, Kati-Coulibaly S, Horcajada M-N, Coxam V (2005) Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions. Calcif Tissue Int 77:311–318

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Xing YF, Zhou Z, Yao Y (2015) Dihydrochalcone compounds isolated from crabapple leaves showed anticancer effects on human cancer cell lines. Molecules 20(21193–21):203

    Google Scholar 

  • Ridgway T, O’reilly J, West G, Tucker G, Wiseman H (1997) Antioxidant action of novel derivatives of the apple-derived flavonoid phloridzin compared to oestrogen: relevance to potential cardioprotective action. Biochem Soc Trans 25:106S–106S

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Garbanzo C, Zimmermann BF, Schulze-Kaysers N, Schieber A (2017) Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv.‘Criolla’) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Res Int 100:445–453

    Article  CAS  PubMed  Google Scholar 

  • Rupasinghe HV (2015) Acylated derivatives of phloridzin and isoquercetrin as anticancer therapeutics and methods of their use. WIPO (PCT), Patent No. WO2015019193A2. Available: https://patents.google.com/patent/WO2015019193A2/en?oq=WO2015019193A2

  • Saenger T, Hübner F, Humpf HU (2017) Short-term biomarkers of apple consumption. Mol Nutr Food Res 61:1600629

    Article  PubMed  Google Scholar 

  • Serra AT, Matias AA, Frade RF, Duarte RO, Feliciano RP, Bronze MR, Figueira M, De Carvalho A, Duarte CM (2010) Characterization of traditional and exotic apple varieties from Portugal. Part 2 – Antioxidant and antiproliferative activities. J Funct Foods 2:46–53

    Article  Google Scholar 

  • Shi J, Zheng H, Yu J et al (2016a) SGLT-1 transport and deglycosylation inside intestinal cells are key steps in the absorption and disposition of calycosin-7-O-β-d-glucoside in rats. Drug Metab Dispos 44:283–296

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Wu J, Meng C, Ma B, Wang T, Li Y, Ma Y (2016b) Cyp3a11-mediated testosterone-6β-hydroxylation decreased, while UGT1a9-mediated propofol O-glucuronidation increased, in mice with diabetes mellitus. Biopharm Drug Dispos 37:433–443

    Article  CAS  PubMed  Google Scholar 

  • Shin S-K, Cho S-J, Jung UJ, Ryu R, Choi M-S (2016) Phlorizin supplementation attenuates obesity, inflammation, and hyperglycemia in diet-induced obese mice fed a high-fat diet. Nutrients 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Kratzer F (1969) Toxicity and related physiological activity of phenolic substances of plant origin. J Agric Food Chem 17:497–512

    Article  CAS  Google Scholar 

  • Sowa A, Zgórka G, Szykuła A, Franiczek R, Żbikowska B, Gamian A, Sroka Z (2016) Analysis of polyphenolic compounds in extracts from leaves of some Malus domestica cultivars: antiradical and antimicrobial analysis of these extracts. Biomed Res Int 2016:6705431

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Zhao W, Gu S (2010) Phlorizin derivatives and their preparation and application. WIPO (PCT), Patent No. WO2010012153A1. Available: https://patents.google.com/patent/WO2010012153A1/en?oq=WO2010012153A1

  • Sun Y, Li W, Liu Z (2015) Preparative isolation, quantification and antioxidant activity of dihydrochalcones from Sweet Tea (Lithocarpus polystachyus Rehd.). J Chromatogr B 1002:372–378

    Article  CAS  Google Scholar 

  • Sun L, Sun J, Thavaraj P, Yang X, Guo Y (2017) Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chem 224:372–381

    Article  CAS  PubMed  Google Scholar 

  • Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N (2019) SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health 16:2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thilakarathna SH, Rupasinghe HV, Needs PW (2013) Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Food Chem 138:463–470

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Gao L, Guo Y, Xu Y (2017) Short-term phlorizin treatment attenuates adipose tissue inflammation without alerting obesity in high-fat diet fed mice. J Food Biochem 41:e12407

    Article  Google Scholar 

  • Tian Y, Lu W, Deng H, Yang F, Guo Y, Gao L, Xu Y (2018) Phlorizin administration ameliorates cognitive deficits by reducing oxidative stress, tau hyper-phosphorylation, and neuroinflammation in a rat model of Alzheimer’s disease. J Food Biochem 42:e12644

    Article  Google Scholar 

  • Tian L, Cao J, Zhao T, Liu Y, Khan A, Cheng G (2021) The bioavailability, extraction, biosynthesis and distribution of natural dihydrochalcone: phloridzin. Int J Mol Sci 22:962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576

    Article  CAS  PubMed  Google Scholar 

  • Van Baar MJB, Van Ruiten CC, Muskiet MHA, Van Bloemendaal L, Ijzerman RG, Van Raalte DH (2018) SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care 41:1543–1556

    Article  PubMed  Google Scholar 

  • Vasantha Rupasinghe H, Yasmin A (2010) Inhibition of oxidation of aqueous emulsions of omega-3 fatty acids and fish oil by phloretin and phloridzin. Molecules 15:251–257

    Article  CAS  PubMed  Google Scholar 

  • Wahajuddin RKS, Singh SP, Taneja I (2014) Investigation of the functional role of P-glycoprotein in limiting the oral bioavailability of lumefantrine. Antimicrob Agents Chemother 58:489–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandjou JGN, Lancioni L, Barbalace MC et al (2020) Comprehensive characterization of phytochemicals and biological activities of the Italian ancient apple ‘Mela Rosa dei Monti Sibillini’. Food Res Int 137:109422

    Article  Google Scholar 

  • Wang SW, Chen J, Jia X, Tam VH, Hu M (2006) Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos 34:1837–1848

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang S, Liu Y et al (2013) Targeting of sodium–glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han: SPRD rats. Kidney Int 84:962–968

    Article  CAS  PubMed  Google Scholar 

  • Wang G-E, Li Y-F, Wu Y-P, Tsoi B, Zhang S-J, Cao L-F, Kurihara H, He R-R (2014) Phloridzin improves lipoprotein lipase activity in stress-loaded mice via AMPK phosphorylation. Int J Food Sci Nutr 65:874–880

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Huang Y, Li K, Chen Y, Vanegas D, Mclamore ES, Shen Y (2016b) Leaf extract from lithocarpus polystachyus Rehd. promote glycogen synthesis in T2DM mice. PLoS One 11:e0166557

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li X, Wang Z (2016a) Whole body radioprotective effect of phenolic extracts from the fruits of Malus baccata (Linn.) Borkh. Food Funct 7:975–981

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cheng J, Wang H, Wang M, Zhao J, Wu Z (2019a) Protective effect of apple phlorizin on hydrogen peroxide-induced cell damage in HepG2 cells. J Food Biochem 43:e13052

    Article  PubMed  Google Scholar 

  • Wang H, Sun Z, Liu D, Li X, Rehman RU, Wang H, Wu Z (2019c) Apple phlorizin attenuates oxidative stress in Drosophila melanogaster. J Food Biochem 43:e12744

    PubMed  Google Scholar 

  • Wang Z, Gao Z, Wang A, Jia L, Zhang X, Fang M, Yi K, Li Q, Hu H (2019b) Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase II metabolism. Food Funct 10:1582–1594

    Article  PubMed  Google Scholar 

  • Wei L, Huaxue H (2021) Method for separating trilobatin and phlorizin from wild sweet tea of zhijiang. China, Patent No. CN111793102B. Available: https://patents.google.com/patent/CN111793102B/en?oq=CN111793102B

  • Wenjun X, Yu Q, Jichun D, Jinyu F (2016) The method of multiple-ear rock Ke phlorizin monomer is prepared in a kind of separation. China, Patent No. CN104861012B. Available: https://patents.google.com/patent/CN104861012B/en?oq=CN104861012B

  • Wu B (2012) Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study. J Pharm Sci 101:381–393

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Sun K, Lu J, Weng Y, Taoka A, Sakagami Y, Qi J (2011) Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Biosci Biotechnol Biochem 75:854–858

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Zhang Y, Chen X, Wang Y, Chen W, Xu Q, Li P, Ma F (2017) Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus ‘Red Splendor’ fruit. Food Chem 231:324–331

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Jin Z, Ohm J-B, Schwarz P, Rao J, Chen B (2019) Effect of germination time on antioxidative activity and composition of yellow pea soluble free and polar soluble bound phenolic compounds. Food Funct 10:6840–6850

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Kato M, Suzuki M, Asanuma K, Aso Y, Ikeda S, Ishigai M (2011) Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats. DMDSAI 39:1801–1807

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wu Y, Liang J et al (2016) Phlorizin treatment attenuates obesity and related disorders through improving BAT thermogenesis. J Funct Foods 27:429–438

    Article  CAS  Google Scholar 

  • Yue Y, Liu J, Fan J, Yao X (2011) Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. J Pharm Biomed Anal 56:336–342

    Article  CAS  PubMed  Google Scholar 

  • Yuste S, Macià A, Ludwig IA, Romero MP, Fernández-Castillejo S, Catalán Ú, Motilva MJ, Rubió L (2018) Validation of dried blood spot cards to determine apple phenolic metabolites in human blood and plasma after an acute intake of red-fleshed apple snack. Mol Nutr Food Res 62:1800623

    Article  Google Scholar 

  • Yuste S, Ludwig IA, Rubió L, Romero M-P, Pedret A, Valls R-M, Solà R, Motilva M-J, Macià A (2019) In vivo biotransformation of (poly) phenols and anthocyanins of red-fleshed apple and identification of intake biomarkers. J Funct Foods 55:146–155

    Article  CAS  Google Scholar 

  • Zhai Y, Dang Y, Gao W, Zhang Y, Xu P, Gu J, Ye X (2015) P38 and JNK signal pathways are involved in the regulation of phlorizin against UVB-induced skin damage. Exp Dermatol 24:275–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao Y, Zhang M et al (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 7:e42529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Su M, Du J, Zhou H, Li X, Li X, Ye Z (2019) Comparison of phytochemical differences of the pulp of different peach [Prunus persica (L.) Batsch] cultivars with alpha-glucosidase inhibitory activity variations in China using UPLC-Q-TOF/MS. Molecules 24:1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Chen S, Fu H et al (2021) Hypoglycemic and hypolipidemic activities of phlorizin from Lithocarpus polystachyus Rehd in diabetes rats. Food Sci Nutr 9:1989–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yakar S, Gavrilova O, Sun H, Zhang Y, Kim H, Setser J, Jou W, Leroith D (2004) Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes 53:2901–2909

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu C, Lai X, Hou S, Zeng X, Li X (2017) Immunomodulatory activities of phlorizin metabolites in lipopolysaccharide-stimulated RAW264. 7 cells. Biomed Pharmacother 91:49–53

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Hu L, Li P, Gong X, Ma F (2017) Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci 265:131–145

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Hu L, Li Y, Chen X, Zhang Z, Liu B, Li P, Gong X, Ma F (2019) MdUGT88F1-mediated phloridzin biosynthesis regulates apple development and Valsa canker resistance. Plant Physiol 180:2290–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielinska D, Laparra-Llopis JM, Zielinski H, Szawara-Nowak D, Giménez-Bastida JA (2019) Role of apple phytochemicals, phloretin and phloridzin, in modulating processes related to intestinal inflammation. Nutrients 11:1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Caprioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abouelenein, D., Caprioli, G., Mustafa, A.M. (2023). Phloridzin: Advances on Resources, Biosynthetic Pathway, Bioavailability, Bioactivity, and Pharmacology. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics