Skip to main content

Chrysoeriol: Derivatives, Resources, Biosynthetic Pathway, Bioavailability, and Bioactivities

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Flavonoids are a class of polyphenols, belonging to the secondary metabolites synthesized by the plant in their response to harsh conditions. An excellent number of flavonoids are being isolated in recent years for their stupendous anti-inflammatory and many other pharmaceutical activities. They are mostly extracted from tropical plants. Chrysoeriol, a dietary flavonoid, is a methoxy derivative of luteolin observed in numerous plants and observed as several derivatives. These natural products are well known for their beneficial effects on health and have also been studied over a long period, along with efforts being made to apply this natural ingredient so-called chrysoeriol, for clinical therapeutic outcomes. Several former studies hypothesize this natural product is established to have characteristic effects such as anti-inflammatory, antioxidant, anticancer, antidiabetic, anti-arthritis, antimicrobial, antithrombotic, antihyperlipidemic, antinociceptive, and others and also found to interferes in certain disease-related progression pathways. This present chapter will illustrate the methoxy derivative of luteolin, i.e., chrysoeriol, its various plant sources, its different characteristic effects on diseases like cancer, diabetes, atherosclerosis, neurogenetic diseases, and cardiovascular diseases, and its role in different signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4-OHE2:

4-hydroxy estrone

ALP:

Alkaline phosphatase

AP-1:

Activating protein-1

CAT:

Catalase

CAX:

Chrysoeriol-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside

CH2Cl2:

Dichloromethane

CHCL3MeOH:

Chloroform-methanol

COX-2:

Cycloxygenase 2

CRG:

Chrysoeriol-7-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-(4″-hydrogeno sulfate) glucopyranoside

CX:

Chrysoeriol-7-O-β-D-xyloside

DHI:

5,6-Dihydroxy indole

DHICA:

5,6-Dihydroxy indole-2-carboxylic acid

EEF:

Ethanol elution fraction

GGT:

Gamma-glutamyl transferase

GNPS:

Global Natural Products

GSH:

Glutathione peroxidase

GSK3β:

Glycogen synthase kinase 3β

H2DCFDA:

2,7-Dichlorofluorescein diacetate

HBV:

Hepatitis B virus

IL β:

Interleukin 1β

LPS:

Lipopolysaccharide

MDA:

Malondialdehyde

MeOH:

Methanol

MIC:

Minimum inhibitory cytotoxicity

MPP+:

1-Methyl-4-phenyl pyridinium

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin susceptible Staphylococcus aureus

NDS:

Neural deficit

NF:

Nitrofurantion

OD:

Optical density

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

RA-FLS:

Rheumatoid arthritis fibroblast-like synoviocytes

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TFS:

Tanre Fushi syndrome

TNF-α:

Tumor necrosis factor

TRY:

Tyrosinase

UVR:

Ultraviolet radiation

α-MSH:

Alpha melanocyte-stimulating hormone

References

  • Aboulaghras S, Sahib N, Bakrim S, Benali T, Charfi S, Guaouguaou FE, Omari NE, Gallo M, Montesano D, Zengin G, Taghzouti K (2022) Health benefits and pharmacological aspects of chrysoeriol. Pharmaceuticals 15(8):973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amrutha K, Nanjan P, Shaji SK, Sunilkumar D, Subhalakshmi K, Rajakrishna L, Banerji A (2014) Discovery of lesser known flavones as inhibitors of NF-κB signaling in MDA-MB-231 breast cancer cells-A SAR study. Bioorg Med Chem Lett 24(19):4735–4742

    Article  CAS  PubMed  Google Scholar 

  • Assefa ST, Yang EY, Asamenew G, Kim HW, Cho MC, Lee J (2021) Identification of α-glucosidase inhibitors from leaf extract of pepper (Capsicum spp.) through metabolomic analysis. Meta 11(10):649

    CAS  Google Scholar 

  • Azizah M, Pripdeevech P, Thongkongkaew T, Mahidol C, Ruchirawat S, Kittakoop P (2020) UHPLC-ESI-QTOF-MS/MS-based molecular networking guided isolation and dereplication of antibacterial and antifungal constituents of Ventilago denticulata. Antibiotics 9(9):606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashyal P, Parajuli P, Pandey RP, Sohng JK (2019) Microbial biosynthesis of antibacterial chrysoeriol in recombinant Escherichia coli and bioactivity assessment. Catalysts 9(2):112

    Article  Google Scholar 

  • Baskaran K, Pugalendi KV, Saravanan R (2015) Antidiabetic and antihyperlipidemic activity of Chrysoeriol in diabetic rats, role of HMG CoA reductase, LCAT and LPL: in vivo and in silico approaches. J Pharm Res 9:597–605

    CAS  Google Scholar 

  • Bhatti HA, Rubina R, Rashid F, Zaib S, Iqbal J, Hameed A (2022) Synthesis and antitumor activities of novel Mannich base derivatives derived from natural flavonoids. Nat Resour Human Health 2(2):100–106

    Article  Google Scholar 

  • Cha BY, Shi WL, Yonezawa T, Teruya T, Nagai K, Woo JT (2009) An inhibitory effect of chrysoeriol on platelet-derived growth factor (PDGF)-induced proliferation and PDGF receptor signaling in human aortic smooth muscle cells. J Pharmacol Sci 110(1):105–110

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li X, Liu X, Wang N, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ (2020) Investigation of chemical composition, antioxidant activity, and the effects of alfalfa flavonoids on growth performance. Oxidative Med Cell Longev 2020

    Google Scholar 

  • Choi DY, Lee JY, Kim MR, Woo ER, Kim YG, Kang KW (2005) Chrysoeriol potently inhibits the induction of nitric oxide synthase by blocking AP-1 activation. J Biomed Sci 949–59

    Google Scholar 

  • Eudes A, Dutta T, Deng K, Jacquet N, Sinha A, Benites VT, Baidoo EE, Richel A, Sattler SE, Northen TR, Singh S (2017) SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS One 12(6):e0178160

    Article  PubMed  PubMed Central  Google Scholar 

  • Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawlik-Dziki U, Sugier P, Dziki D, Sugier D, Pecio Ł (2020) Water soldier Stratiotes aloides L. – forgotten famine plant with unique composition and antioxidant properties. Molecules 25(21):5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol 92(1):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K (2019) Role of soluble epoxide hydrolase in metabolism of PUFAs in psychiatric and neurological disorders. Front Pharmacol 10:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, Gondal TA (2019) Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 1(112):108612

    Google Scholar 

  • Jaffal SM, Al-Najjar BO, Abbas MA, Oran SA (2020) Antinociceptive action of Moringa peregrina is mediated by an interaction with α2-Adrenergic receptor. Balkan Med J 37(4):189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang YH, Park JR, Kim KM (2020) Antimicrobial activity of chrysoeriol 7 and chochlioquinone 9, white-backed planthopper-resistant compounds, against rice pathogenic strains. Biology 9(11):382

    Google Scholar 

  • Khan AU, Gilani AH (2006) Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol. Eur J Nutr 45:463–469

    Article  CAS  PubMed  Google Scholar 

  • Khattab AR, Teleb M, Kamel MS (2021) In silico study of potential anti-SARS cell entry phytoligands from Phlomis aurea: a promising avenue for prophylaxis. Futur Virol 16(11):761–775

    Article  CAS  Google Scholar 

  • Kim JH, Jin CH (2020) Inhibitory activity of flavonoids, chrysoeriol and luteolin-7-o-glucopyranoside, on soluble epoxide hydrolase from Capsicum chinense. Biomol Ther 10(2):180

    Article  CAS  Google Scholar 

  • Kim JA, Lau EK, Pan L, De Blanco EJ (2010) NF-κB inhibitors from Brucea javanica exhibiting intracellular effects on reactive oxygen species. Anticancer Res 30(9):3295–3300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Kwon SY, Woo SY, Seo WD, Kim DY (2021) Antioxidative effects of chrysoeriol via activation of the Nrf2 signaling pathway and modulation of mitochondrial function. Molecules 26(2):313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Lee EJ, Ahn Y, Park S, Kim SH, Oh SH (2019) A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine 57:57–64

    Google Scholar 

  • Krishnan B, Ganesan AR, Balasubramani R, Nguyen DD, Chang SW, Wang S, Xiao J, Balasubramanian B (2020) Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Sci Human Wellness 9(4):346–354

    Article  Google Scholar 

  • Küpeli E, Şahin FP, Çalış İ, Yeşilada E, Ezer N (2007) Phenolic compounds of Sideritis ozturkii and their in vivo anti-inflammatory and antinociceptive activities. J Ethnopharmacol 112(2):356–360

    Article  PubMed  Google Scholar 

  • Lan JE, Li XJ, Zhu XF, Sun ZL, He JM, Zloh M, Gibbons S, Mu Q (2021) Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus. Nat Prod Res 35(11):1881–1886

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kwak HJ, Shin Y, Kim SJ, Lee GH, Park IH, Kim SH, Kang KS (2023) Elucidation of phytochemicals affecting platelet responsiveness in Dangguisu-san: active ingredient prediction and experimental research using network pharmacology. Plan Theory 12(5):1120

    CAS  Google Scholar 

  • Li B, Guo QL, Tian Y, Liu SJ, Wang Q, Chen L, Dong JX (2016) New anti-HBV C-boivinopyranosyl flavones from Alternanthera philoxeroides. Molecules 21(3):336

    Article  PubMed  PubMed Central  Google Scholar 

  • Limboonreung T, Tuchinda P, Chongthammakun S (2020) Chrysoeriol mediates mitochondrial protection via PI3K/Akt pathway in MPP+ treated SH-SY5Y cells. Neurosci Lett 714:134545

    Article  CAS  PubMed  Google Scholar 

  • Liu YX, Chen YJ, Xu BW, Fu XQ, Ding WJ, Li SM, Wang XQ, Wu JY, Wu Y, Dou X, Liu B (2023) Inhibition of STAT3 signaling contributes to the anti-melanoma effects of chrysoeriol. Phytomedicine 109:154572

    Article  CAS  PubMed  Google Scholar 

  • Maleki SJ, Crespo JF, Cabanillas B (2019) Anti-inflammatory effects of flavonoids. Food Chem 299:125124

    Article  CAS  PubMed  Google Scholar 

  • Méndez-López LF, Caboni P, Arredondo-Espinoza E, Carrizales-Castillo JJ, Balderas-Rentería I, Camacho-Corona MD (2021) Bioassay-guided identification of the antiproliferative compounds of Cissus trifoliata and the transcriptomic effect of resveratrol in prostate cancer Pc3 cells. Molecules 26(8):2200

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng XY, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comp Aided Drug Design 7(2):146–157

    Article  CAS  Google Scholar 

  • Min DY, Jung E, Ahn SS, Lee YH, Lim Y, Shin SY (2020) Chrysoeriol prevents TNFα-induced Cyp19 gene expression via Egr-1 downregulation in Mcf7 breast cancer cells. Int J Mol Sci 21(20):7523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon RT (2005) Wnt/β-catenin pathway. Sci STKE 2005(271):cm1

    PubMed  Google Scholar 

  • Nascimento PL, Nascimento TC, Ramos NS, Silva GR, Gomes JE, Falcão RE, Moreira KA, Porto AL, Silva TM (2014) Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules 19(4):5434–5447

    Article  PubMed  PubMed Central  Google Scholar 

  • Negri G, Mattei R, Mendes FR (2014) Antinociceptive activity of the HPLC-and MS-standardized hydroethanolic extract of Pterodon emarginatus Vogel leaves. Phytomedicine 21(8–9):1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Oh SY, Hyun CG (2022) Chrysoeriol enhances melanogenesis in B16F10 cells through the modulation of the MAPK, AKT, PKA, and Wnt/β-catenin signaling pathways. Nat Prod Commun 17(1):1934578X211069204

    CAS  Google Scholar 

  • Olennikov DN, Chirikova NK, Kashchenko NI, Nikolaev VM, Kim SW, Vennos C (2018) Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front Pharmacol 9:756

    Article  PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) CAS: 528: DC% 2BC1cXlsVCmsLc% 3D: Flavonoids: an overview. J Nutr Sci 5

    Google Scholar 

  • Pitchuanchom S, Mahiwan C, Chotichayapong C, Kanokmedhakul S, Poopasit K, Nontakitticharoen M (2022) Phytochemicals from twigs of Afzelia xylocarpa and their antioxidation kinetics of oxymyoglobin. Nat Prod Res 36(10):2615–2619

    Article  CAS  PubMed  Google Scholar 

  • Ramirez G, Zamilpa A, Zavala M, Perez J, Morales D, Tortoriello J (2016) Chrysoeriol and other polyphenols from Tecoma stans with lipase inhibitory activity. J Ethnopharmacol 185:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(8):1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Ruttanaphan T, Thitathan W, Piyasaengthong N, Nobsathian S, Bullangpoti V (2022) Chrysoeriol isolated from Melientha suavis Pierre with activity against the agricultural pest Spodoptera litura. Chem Biol Technologies Agric 9(1):1–7

    Google Scholar 

  • Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B (2019) Antioxidant compounds and their antioxidant mechanism. Antioxidants 10:1–29

    Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E (2020) Nature-derived compounds modulating Wnt/β-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 10(10):1814–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao G, Chen S, Sun Y, Xu H, Ge F (2021a) Chrysoeriol promotes functional neurological recovery in a rat model of cerebral ischemia. Pharmacogn Mag 17(76):802–810

    Article  CAS  Google Scholar 

  • Shao F, Zhou L, Zhang Y, Chen H, Zhang Y, Guan Z (2021b) Gastrodin alleviates inflammatory injury of cardiomyocytes in septic shock mice via inhibiting NLRP3 expression. In Vitro Cellular Dev Biol-Anim 57(5):571–581

    Article  CAS  Google Scholar 

  • Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT (2022) Melanoma, melanin, and melanogenesis: the Yin and Yang relationship. Front Oncol 12

    Google Scholar 

  • Starek-Świechowicz B, Budziszewska B, Starek A (2021) Endogenous estrogens – breast cancer and chemoprevention. Pharmacol Rep 73(6):1497–1512

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagousop CN, Tamokou JD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18(1):1

    Article  Google Scholar 

  • Tai BH, Cuong NM, Huong TT, Choi EM, Kim JA, Kim YH (2009) Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. J Asian Nat Prod Res 11(9):817–823

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Zhang Q (2022) The potential toxic side effects of flavonoids. Biocell 46(2):357

    Article  CAS  Google Scholar 

  • Vestena A, Comerlato L, Bridi H, Guerini L, Ccana-Ccapatinta GV, Vignoli-Silva M, Apel MA, Fernandes S, Castro-Gamboa I, Zuanazzi JA, von Poser GL (2019) Chrysoeriol derivatives and other constituents from Glandularia selloi. Phytochem Lett 29:30–34

    Article  CAS  Google Scholar 

  • Vrzal R (2021) Genetic and enzymatic characteristics of CYP2A13 in relation to lung damage. Int J Mol Sci 22(22):12306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahab GA, Sallam A, Elgaml A, Lahloub MF, Afifi MS (2022) Antioxidant, antimicrobial and anti-quorum sensing compounds from Salix babylonica. S Afr J Bot 147:774–781

    Article  Google Scholar 

  • Wang P, Wang S, Chen H, Deng X, Zhang L, Xu H, Yang H (2021) TCMIP v2. 0 powers the identification of chemical constituents available in Xinglou Chengqi decoction and the exploration of pharmacological mechanisms acting on stroke complicated with Tanre Fushi syndrome. Front Pharmacol:1655

    Google Scholar 

  • Wang CR, Ji HW, He SY, Liu RP, Wang XQ, Wang J, Huang CM, Xu YN, Li YH, Kim NH (2023) Chrysoeriol improves in vitro porcine embryo development by reducing oxidative stress and autophagy. Veterinary Sci 10(2):143

    Google Scholar 

  • Wei W, He J, Ruan H, Wang Y (2019) In vitro and in vivo cytotoxic effects of chrysoeriol in human lung carcinoma are facilitated through activation of autophagy, sub-G1 cell cycle arrest, cell migration and invasion inhibition and modulation of MAPK/ERK signalling pathway. J BUON 24(3):936–942

    PubMed  Google Scholar 

  • Wongkularb S, Limboonreung T, Tuchinda P, Chongthammakun S (2022) Suppression of PI3K/Akt/mTOR pathway in chrysoeriol-induced apoptosis of rat C6 glioma cells. In Vitro Cellular & Developmental Biology-Animal 1:1–8

    Google Scholar 

  • Wu JY, Chen YJ, Bai L, Liu YX, Fu XQ, Zhu PL, Li JK, Chou JY, Yin CL, Wang YP, Bai JX (2020) Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. Phytomedicine 68:153173

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Chen YJ, Fu XQ, Li JK, Chou JY, Yin CL, Bai JX, Wu Y, Wang XQ, Li AS, Wong LY (2022) Chrysoeriol suppresses hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes and inhibits JAK2/STAT3 signaling. BMC Complement Med Therapies 22(1):73

    Article  Google Scholar 

  • Wu X, Yuwen M, Pu Z, Zhao Z, Yu H, Zha J (2023) Engineering of flavonoid 3′-O-methyltransferase for improved biosynthesis of chrysoeriol in Escherichia coli. Appl Microbiol Biotechnol 1-0

    Google Scholar 

  • Yin Q, Wang L, Yu H, Chen D, Zhu W, Sun C (2021) Pharmacological effects of polyphenol phytochemicals on the JAK-STAT signaling pathway. Front Pharmacol 12:716672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Park CM (2021) Chrysoeriol ameliorates COX-2 expression through NF-κB, AP-1 and MAPK regulation via the TLR4/MyD88 signaling pathway in LPS-stimulated murine macrophages. Exp Ther Med 22(1):1–6

    Article  Google Scholar 

  • Younis IY, Khattab AR, Selim NM, Sobeh M, Elhawary SS, Bishbishy MH (2022) Metabolomics-based profiling of 4 avocado varieties using HPLC–MS/MS and GC/MS and evaluation of their antidiabetic activity. Sci Rep 12(1):4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaabat N, Hay AE, Michalet S, Skandrani I, Chekir-Ghedira L, Dijoux-Franca MG, Akkal S (2020) Chemical composition, antioxidant, genotoxique and antigenotoxic potentials of Phlomis Bovei De Noé Aerial Parts. Iranian J Pharmaceut Res: IJPR 19(1):282

    CAS  Google Scholar 

  • Zhang J, Chu CJ, Li XL, Yao S, Yan B, Ren HL, Xu NY, Liang ZT, Zhao ZZ (2014) Isolation and identification of antioxidant compounds in Vaccinium bracteatum Thunb. by UHPLC-Q-TOF LC/MS and their kidney damage protection. J Funct 1(11):62–70

    Google Scholar 

  • Zhang Y, Li Z, Min Q, Palida A, Zhang Y, Tang R, Chen L, Li H (2018) 8-Chrysoeriol, as a potential BCL-2 inhibitor triggers apoptosis of SW1990 pancreatic cancer cells. Bioorg Chem 77:478–484

    Article  CAS  PubMed  Google Scholar 

  • Zhe L, Song XD, Ying X, Wang XJ, Hui Y, Bai YY, Liu JH, Zhang CN, Hui RT (2009) Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicityin vitro. Chin Med J 122(21):2652–2656

    Google Scholar 

  • Zouheira D, Ngnokam SL, Kamani SL, Tchegnitegni BT, Jouda JB, Mba JR, Nchouwet ML, Nfor NG, Nyirimigabo AK, Kowa TK, Agbor GA (2022) In vitro antilipidic and antithrombotic activities of Plectranthus glandulosus (Lamiaceae) leaves extracts and fractions. Biomed Res Int 2022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijaya Anand Arumugam or Balamuralikrishnan Balasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boro, A. et al. (2023). Chrysoeriol: Derivatives, Resources, Biosynthetic Pathway, Bioavailability, and Bioactivities. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics