Skip to main content

Isorhamnetin: Current knowledge and potential benefits for disease management

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Isorhamnetin is a flavonol that naturally occurs in a variety of plants and is also present in several plant-derived foodstuffs and beverages, including berry juices, wine, onions and almonds. This compound is present as both free isorhamnetin or conjugated with glucuronide or sulfate groups. Its synthesis occurs naturally in planta through the phenylpropanoid pathway and is triggered by environmental stressors, including UV radiation. Additionally, a synthetic cost-effective method for isorhamnetin synthesis has recently been described. Interest in isorhamnetin as a potential bioactive compound emerged from its presence in herbs such as Gingko biloba and Persicaria thunbergii H, which are used as treatment of rheumatism, hemorrhage, and cancer in traditional medicine. In this scenario, this book chapter reviews the current evidence regarding isorhamnetin efficacy in the regulation of several functions, such as antioxidant, anti-inflammatory, or antimicrobial. In addition, the effects of this compound in the management of health alterations, including metabolic syndrome, cancer, or cardiovascular diseases, are also addressed. To do so, evidence obtained from preclinical studies, conducted in vitro and in vivo, as well as clinical trials is reviewed and analyzed. Likewise, the toxicology and safety aspects described for isorhamnetin are also described. In the final part of the chapter, the patents involving isorhamnetin usage are analyzed, and the future perspectives for this compound detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdal Dayem A, Choi HY, Kim YB, Cho SG (2015) Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 10(3):e0121610

    Article  PubMed  Google Scholar 

  • Acquaviva R, Malfa GA, Di Giacomo C (2021) Plant-based bioactive molecules in improving health and preventing lifestyle diseases. Int J Mol Sci 22(6):2991

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn H, Lee GS (2017) Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 24:77–86

    Article  CAS  PubMed  Google Scholar 

  • Almeida AF, Borge GIA, Piskula M, Tudose A, Tudoreanu L, Valentová K et al (2018) Bioavailability of quercetin in humans with a focus on interindividual variation. Compr Rev Food Sci Food Saf 17(3):714–731

    Article  CAS  PubMed  Google Scholar 

  • Antonanzas F, Lozano C, Torres C (2015) Economic features of antibiotic resistance: the case of methicillin-resistant Staphylococcus aureus. PharmacoEconomics 33(4):285–325

    Article  PubMed  Google Scholar 

  • Antunes-Ricardo M, Rodríguez-Rodríguez C, Gutiérrez-Uribe JA, Cepeda-Cañedo E, Serna-Saldívar SO (2017) Bioaccessibility, intestinal permeability and plasma stability of isorhamnetin glycosides from opuntia ficus-indica (L.). Int J Mol Sci 18(8):1816

    Article  PubMed  PubMed Central  Google Scholar 

  • Aonuma K, Ferdousi F, Xu D, Tominaga K, Isoda H (2020) Effects of isorhamnetin in human amniotic epithelial stem cells. Front Cell Dev Biol 8:578197

    Article  PubMed  PubMed Central  Google Scholar 

  • Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M et al (2019) Phenolic compounds inhibit 3T3-L1 adipogenesis depending on the stage of differentiation and their binding affinity to PPARγ. Molecules 24(6)

    Google Scholar 

  • Aura A-M (2008) Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev 7(3):407–429

    Article  CAS  Google Scholar 

  • Bao M, Lou Y (2006) Isorhamnetin prevent endothelial cell injuries from oxidized LDL via activation of p38MAPK. Eur J Pharmacol 547(1–3):22–30

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Ghosh D, Bhattacharya S, Sarkar S, Karmakar P, Koley H et al (2018) Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane. Lett Appl Microbiol 66(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Brevik A, Rasmussen SE, Drevon CA, Andersen LF (2004) Urinary excretion of flavonoids reflects even small changes in the dietary intake of fruits and vegetables. Cancer Epidemiol Biomark Prev 13(5):843–849

    Article  CAS  Google Scholar 

  • Cai F, Zhang Y, Li J, Huang S, Gao R (2020) Isorhamnetin inhibited the proliferation and metastasis of androgen-independent prostate cancer cells by targeting the mitochondrion-dependent intrinsic apoptotic and PI3K/Akt/mTOR pathway. Biosci Rep 40(3)

    Google Scholar 

  • ChemID plus Substance Name: 3-Methylquercetin [Internet] (n.d.) [cited 31 Jan 2022]. Available from: https://chem.nlm.nih.gov/chemidplus/sid/0000480193

  • Chen F, Leick V (2004) The protozoan Tetrahymena as a bioindicator to screen bioactive substances. J Microbiol Methods 59(2):233–241

    Article  CAS  PubMed  Google Scholar 

  • Chen TL, Zhu GL, Wang JA, Zhang GD, Liu HF, Chen JR et al (2015) Protective effects of isorhamnetin on apoptosis and inflammation in TNF-α-induced HUVECs injury. Int J Clin Exp Pathol 8(3):2311–2320

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, Song S, Wang Z, Shen Y, Xie L, Li J et al (2021a) Isorhamnetin induces the paraptotic cell death through ROS and the ERK/MAPK pathway in OSCC cells. Oral Dis 27(2):240–250

    Article  PubMed  Google Scholar 

  • Chen F, Hu M, Shen Y, Zhu W, Cao A, Ni B et al (2021b) Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. Eur J Pharmacol 895:173878

    Article  CAS  PubMed  Google Scholar 

  • Chi G, Zhong W, Liu Y, Lu G, Lü H, Wang D et al (2016) Isorhamnetin protects mice from lipopolysaccharide-induced acute lung injury via the inhibition of inflammatory responses. Inflamm Res 65(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Choi YH (2016) The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation. Gen Physiol Biophys 35(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Choi YH (2019) Isorhamnetin induces ROS-dependent cycle arrest at G2/M phase and apoptosis in human hepatocarcinoma Hep3B cells. Gen Physiol Biophys 38(6):473–484

    Article  CAS  PubMed  Google Scholar 

  • Cornish KM, Williamson G, Sanderson J (2002) Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Free Radic Biol Med 33(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Bi J, Li F, Wang S, Huang X, Meng X et al (2019) Antiviral efficacy of flavonoids against enterovirus 71 infection in vitro and in newborn mice. Viruses 11(7)

    Google Scholar 

  • de Winter TJJ, Nusse R (2021) Running against the Wnt: how Wnt/β-catenin suppresses adipogenesis. Front Cell Dev Biol 9:627429

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong GZ, Lee JH, Ki SH, Yang JH, Cho IJ, Kang SH et al (2014) AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. Eur J Pharmacol 740:634–640

    Article  CAS  PubMed  Google Scholar 

  • Dou W, Zhang J, Li H, Kortagere S, Sun K, Ding L et al (2014) Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway. J Nutr Biochem 25(9):923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du LY, Zhao M, Tao JH, Qian DW, Jiang S, Shang EX et al (2017) The metabolic profiling of isorhamnetin-3-O-Neohesperidoside produced by human intestinal flora employing UPLC-Q-TOF/MS. J Chromatogr Sci 55(3):243–250

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Jia C, Liu Y, Li Y, Wang J, Sun K (2020) Isorhamnetin enhances the radiosensitivity of A549 cells through interleukin-13 and the NF-κB signaling pathway. Front Pharmacol 11:610772

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Xie Y, Luo H, Li G, Wu T, Zhang T (2014) Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Food Chem Toxicol 66:313–320

    Article  CAS  PubMed  Google Scholar 

  • Duan R, Liang X, Chai B, Zhou Y, Du H, Suo Y et al (2020) Isorhamnetin induces melanoma cell apoptosis via the PI3K/Akt and NF-κ B pathways. Biomed Res Int 2020:1057943

    Article  PubMed  PubMed Central  Google Scholar 

  • Eseberri I, Miranda J, Lasa A, Mosqueda-Solís A, González-Manzano S, Santos-Buelga C et al (2019) Effects of quercetin metabolites on triglyceride metabolism of 3T3-L1 preadipocytes and mature adipocytes. Int J Mol Sci 20(2)

    Google Scholar 

  • Farias-Pereira R, Savarese J, Yue Y, Lee SH, Park Y (2020) Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in. Curr Res Food Sci 2:70–76

    Article  CAS  PubMed  Google Scholar 

  • Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L (2013) Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 14(10):19651–19669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaya M, Sato Y, Kondo S, Adachi SI, Yoshizawa F (2021) Quercetin enhances fatty acid β-oxidation by inducing lipophagy in AML12 hepatocytes. Heliyon 7(6):e07324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25(12):1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganbold M, Owada Y, Ozawa Y, Shimamoto Y, Ferdousi F, Tominaga K et al (2019) Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis. Sci Rep 9(1):16210

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Yao R, Liu Y, Wang Z, Huang Z, Du B et al (2017) Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway. Mol Cell Biochem 429(1–2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Ghattas A, Griffiths HR, Devitt A, Lip GY, Shantsila E (2013) Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol 62(17):1541–1551

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Fernandes M, Laabei M, Pagan N, Hidalgo J, Molinos S, Villar Hernandez R et al (2017) Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections. PLoS One 12(4):e0175552

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-López I, Lobo-Rodrigo G, Portillo MP, Cano MP (2021) Characterization, stability, and bioaccessibility of betalain and phenolic compounds from Opuntia stricta var. Dillenii fruits and products of their industrialization. Foods 10(7):1593

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong G, Guan YY, Zhang ZL, Rahman K, Wang SJ, Zhou S et al (2020) Isorhamnetin: a review of pharmacological effects. Biomed Pharmacother 128:110301

    Article  CAS  PubMed  Google Scholar 

  • Habtamu A, Melaku Y (2018) Antibacterial and antioxidant compounds from the flower extracts of Vernonia amygdalina. Adv Pharmacol Sci 2018:4083736

    PubMed  PubMed Central  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007:45673

    Article  Google Scholar 

  • Hu S, Huang L, Meng L, Sun H, Zhang W, Xu Y (2015) Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways. Mol Med Rep 12(5):6745–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, He H, Liu Z, Liu D, Yin D, He M (2016) Protective effects of isorhamnetin on cardiomyocytes against anoxia/reoxygenation-induced injury is mediated by SIRT1. J Cardiovasc Pharmacol 67(6):526–537

    Article  CAS  PubMed  Google Scholar 

  • Ibarra M, Pérez-Vizcaíno F, Cogolludo A, Duarte J, Zaragozá-Arnáez F, López-López JG et al (2002) Cardiovascular effects of isorhamnetin and quercetin in isolated rat and porcine vascular smooth muscle and isolated rat atria. Planta Med 68(4):307–310

    Article  CAS  PubMed  Google Scholar 

  • Ibarra M, Moreno L, Vera R, Cogolludo A, Duarte J, Tamargo J et al (2003) Effects of the flavonoid quercetin and its methylated metabolite isorhamnetin in isolated arteries from spontaneously hypertensive rats. Planta Med 69(11):995–1000

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Ohmuma M (1995) Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci Biotechnol Biochem 59(4):595–601

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Varoni EM, Vitalini S (2020) Healthy diets and modifiable risk factors for non-communicable diseases-the European perspective. Foods 9(7)

    Google Scholar 

  • Jamali-Raeufy N, Baluchnejadmojarad T, Roghani M, Keimasi S, Goudarzi M (2019) Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. J Chem Neuroanat 102:101709

    Article  PubMed  Google Scholar 

  • Jiang L, Li H, Wang L, Song Z, Shi L, Li W et al (2016) Isorhamnetin attenuates Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. J Microbiol Biotechnol 26(3):596–602

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Yamashita Y, Nakamura A, Croft K, Ashida H (2019) Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci Rep 9(1):2690

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiayi C, Tianyi N, Dan T, Tingguo K, Qingfeng W, Qianqian Z (2019) Isorhamnetin protects endothelial cells model CRL1730 from oxidative injury by hydrogen peroxide. Pak J Pharm Sci 32(1):131–136

    PubMed  Google Scholar 

  • Jnawali HN, Jeon D, Jeong MC, Lee E, Jin B, Ryoo S et al (2016) Antituberculosis activity of a naturally occurring flavonoid. Isorhamnetin J Nat Prod 79(4):961–969

    Article  CAS  PubMed  Google Scholar 

  • Kawabata K, Yoshioka Y, Terao J (2019) Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 24(2)

    Google Scholar 

  • Kim JE, Lee DE, Lee KW, Son JE, Seo SK, Li J et al (2011) Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prev Res (Phila) 4(4):582–591

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Jin CY, Kim CH, Yoo YH, Choi SH, Kim GY et al (2019) Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int J Mol Med 43(2):682–692

    CAS  PubMed  Google Scholar 

  • Kim M, Jee SC, Kim KS, Kim HS, Yu KN, Sung JS (2021) Quercetin and isorhamnetin attenuate benzo[a]pyrene-induced toxicity by modulating detoxification enzymes through the AhR and NRF2 signaling pathways. Antioxidants (Basel) 10(5)

    Google Scholar 

  • Krishnaswamy K (2016) Diet and nutrition in the prevention of non-communicable diseases. Proc Indian Natl Sci Acad 82:1477–1494

    Article  Google Scholar 

  • Ku SK, Kim TH, Bae JS (2013) Anticoagulant activities of persicarin and isorhamnetin. Vasc Pharmacol 58(4):272–279

    Article  CAS  Google Scholar 

  • Kumar MS, Dutta R, Prasad D, Misra K (2011) Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem 127(3):1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Lan K, He JL, Tian Y, Tan F, Jiang XH, Wang L et al (2008) Intra-herb pharmacokinetics interaction between quercetin and isorhamentin. Acta Pharmacol Sin 29(11):1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Lawes T, Lopez-Lozano JM, Nebot CA, Macartney G, Subbarao-Sharma R, Dare CR et al (2015) Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: a non-linear time-series study. Lancet Infect Dis 15(12):1438–1449

    Article  PubMed  Google Scholar 

  • Lee MS, Kim Y (2018) Effects of isorhamnetin on adipocyte mitochondrial biogenesis and AMPK activation. Molecules 23(8)

    Google Scholar 

  • Lee J, Jung E, Kim S, Huh S, Kim Y, Byun SY et al (2009) Isorhamnetin represses adipogenesis in 3T3-L1 cells. Obesity (Silver Spring) 17(2):226–232

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim B, Oh MJ, Yoon J, Kim HY, Lee KJ et al (2011) Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells. Phytother Res 25(11):1629–1635

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yang X, Chen C, Cai S, Hu J (2014) Isorhamnetin suppresses colon cancer cell growth through the PI3K-Akt-mTOR pathway. Mol Med Rep 9(3):935–940

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yang D, Zhao Y, Qiu Y, Cao X, Yu Y et al (2015a) Inhibitory effects of isorhamnetin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-2/9. Nutr Cancer 67(7):1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ren FQ, Yang CL, Zhou LM, Liu YY, Xiao J et al (2015b) Anti-proliferation effects of isorhamnetin on lung cancer cells in vitro and in vivo. Asian Pac J Cancer Prev 16(7):3035–3042

    Article  PubMed  Google Scholar 

  • Li Y, Chi G, Shen B, Tian Y, Feng H (2016) Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling. Inflammation 39(4):1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wu R, Qin X, Liu D, Lin F, Feng Q (2017) Isorhamnetin inhibits IL-1β-induced expression of inflammatory mediators in human chondrocytes. Mol Med Rep 16(4):4253–4258

    Article  CAS  PubMed  Google Scholar 

  • Li G, Wang G, Wang S, Sun M, Wen Z (2020) Isorhamnetin attenuates Streptococcus suis virulence by inhibiting the inflammatory response. Antonie Van Leeuwenhoek 113(2):303–310

    Article  PubMed  Google Scholar 

  • Lin YH, Chiou JM, Chen TF, Lai LC, Chen JH, Chen YC (2021) The association between metabolic syndrome and successful aging- using an extended definition of successful aging. PLoS One 16(11):e0260550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li J, Wang Y, Li T, Zhao J, Zhang C (2013) Green tea polyphenols function as prooxidants to inhibit Pseudomonas aeruginosa and induce the expression of oxidative stress-related genes. Folia Microbiol (Praha) 58(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther:2

    Google Scholar 

  • Ltd SJPC, Inventor; Shaanxi Jiahe Phytochem Co Ltd, assignee. A kind of synthetic method of Isorhamnetin. China 2015

    Google Scholar 

  • Luo Y, Sun G, Dong X, Wang M, Qin M, Yu Y et al (2015) Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One 10(3):e0120259

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo W, Liu Q, Jiang N, Li M, Shi L (2019) Isorhamnetin inhibited migration and invasion via suppression of Akt/ERK-mediated epithelial-to-mesenchymal transition (EMT) in A549 human non-small-cell lung cancer cells. Biosci Rep 39(9)

    Google Scholar 

  • Marín L, Gutiérrez-Del-Río I, Entrialgo-Cadierno R, Villar CJ, Lombó F (2018) De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS One 13(11):e0207278

    Article  PubMed  PubMed Central  Google Scholar 

  • Matboli M, Saad M, Hasanin AH, Saleh LA, Baher W, Bekhet MM et al (2021) New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: molecular and computational approach. Biomed Pharmacother 135:111176

    Article  CAS  PubMed  Google Scholar 

  • Medina-Leyte DJ, Domínguez-Pérez M, Mercado I, Villarreal-Molina MT, Jacobo-Albavera L (2020) Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: a review. Appl Sci 10(3)

    Google Scholar 

  • Mullen W, Edwards CA, Crozier A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Pamukcu B, Lip GY, Devitt A, Griffiths H, Shantsila E (2010) The role of monocytes in atherosclerotic coronary artery disease. Ann Med 42(6):394–403

    Article  CAS  PubMed  Google Scholar 

  • Park C, Cha HJ, Choi EO, Lee H, Hwang-Bo H, Ji SY et al (2019) Isorhamnetin induces cell cycle arrest and apoptosis via reactive oxygen species-mediated AMP-activated protein kinase signaling pathway activation in human bladder cancer cells. Cancers (Basel) 11(10)

    Google Scholar 

  • Pérez-Vizcaíno F, Ibarra M, Cogolludo AL, Duarte J, Zaragozá-Arnáez F, Moreno L et al (2002) Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J Pharmacol Exp Ther 302(1):66–72

    Article  PubMed  Google Scholar 

  • Phenol-Explorer: an online comprehensive database on polyphenol contents in foods [Internet] (2010) [cited 21 Sept 2017]

    Google Scholar 

  • PubChem Compound Summary for CID 5281654, Isorhamnetin [Internet] (n.d.) [cited 28 Mar 2022]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Isorhamnetin

  • Qi F, Sun JH, Yan JQ, Li CM, Lv XC (2018) Anti-inflammatory effects of isorhamnetin on LPS-stimulated human gingival fibroblasts by activating Nrf2 signaling pathway. Microb Pathog 120:37–41

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Sun G, Zhang Y, Li X, Wang R (2016) Involvement of the NF-κB signaling pathway in the renoprotective effects of isorhamnetin in a type 2 diabetic rat model. Biomed Rep 4(5):628–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Ma Y, Luo Y, Cao Z, Lu H (2017) Protective effects of isorhamnetin on N2a cell against endoplasmic reticulum stress-induced injury is mediated by PKCε. Biomed Pharmacother 93:830–836

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Han L, Li Y, Zhao H, Zhang Z, Zhuang Y et al (2021) Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways. Anat Rec (Hoboken) 304(4):901–913

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez L, Badimon L, Méndez D, Padró T, Vilahur G, Peña E et al (2021) Antiplatelet activity of isorhamnetin via mitochondrial regulation. Antioxidants (Basel). 10(5)

    Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90(4):1507–1546

    Article  CAS  PubMed  Google Scholar 

  • RxList (2021) Definition of antimicrobial. Available from: https://www.rxlist.com/antimicrobial/definition.htm

  • Sanchez M, Lodi F, Vera R, Villar IC, Cogolludo A, Jimenez R et al (2007) Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II in rat aorta. J Nutr 137(4):910–915

    Article  CAS  PubMed  Google Scholar 

  • Sati P, Dhyani P, Bhatt ID, Pandey A (2019) Flavonoid glycosides in antimicrobial perspective with reference to extraction method. J Tradit Complement Med 9(1):15–23

    Article  PubMed  Google Scholar 

  • Saud SM, Young MR, Jones-Hall YL, Ileva L, Evbuomwan MO, Wise J et al (2013) Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin. Cancer Res 73(17):5473–5484

    Article  CAS  PubMed  Google Scholar 

  • Schulz HU, Schürer M, Bässler D, Weiser D (2005) Investigation of pharmacokinetic data of hypericin, pseudohypericin, hyperforin and the flavonoids quercetin and isorhamnetin revealed from single and multiple oral dose studies with a hypericum extract containing tablet in healthy male volunteers. Arzneimittelforschung 55(10):561–568

    CAS  PubMed  Google Scholar 

  • Segneanu A, Velciov S, Olariu S, Cziple F, Damian D, Grozescu I (2017) Bioactive molecules profile from natural compounds. In: Asao T, Asaduzzaman M (eds) Amino acid: new insights and roles in plant and animal. IntechOpen, London

    Google Scholar 

  • Seo K, Yang JH, Kim SC, Ku SK, Ki SH, Shin SM (2014) The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1. Inflammation 37(3):712–722

    Article  CAS  PubMed  Google Scholar 

  • Serra A, Macià A, Romero M-P, Reguant J, Ortega N, Motilva M-J (2012) Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem 130(2):383–393

    Article  CAS  Google Scholar 

  • Shi C, Fan LY, Cai Z, Liu YY, Yang CL (2012) Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin. Neoplasma 59(4):361–369

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu Y et al (2012) Isorhamnetin inhibits H2O2-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 113(2):473–485

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Sun G, Meng X, Wang H, Luo Y, Qin M et al (2013) Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One 8(5):e64526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Peng X, Lin J, Zhang Y, Zhan L, Yin J et al (2021) Isorhamnetin ameliorates aspergillus fumigatus keratitis by reducing fungal load, inhibiting pattern-recognition receptors and inflammatory cytokines. Invest Ophthalmol Vis Sci 62(3):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tkacz K, WojdyÅ‚o A, Turkiewicz IP, Ferreres F, Moreno DA, Nowicka P (2020) UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chem 309:125766

    Article  CAS  PubMed  Google Scholar 

  • Tune JD, Goodwill AG, Sassoon DJ, Mather KJ (2017) Cardiovascular consequences of metabolic syndrome. Transl Res 183:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cao J, Zeng S (2005) Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol 57(6):751–758

    Article  CAS  PubMed  Google Scholar 

  • Wang SD, Xie ZQ, Chen J, Wang K, Wei T, Zhao AH et al (2012) Inhibitory effect of Ginkgo biloba extract on fatty liver: regulation of carnitine palmitoyltransferase 1a and fatty acid metabolism. J Dig Dis 13(10):525–535

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Quan Q, Ji R, Guo XY, Zhang JM, Li X et al (2018a) Isorhamnetin suppresses PANC-1 pancreatic cancer cell proliferation through S phase arrest. Biomed Pharmacother 108:925–933

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Gong HM, Zou HH, Liang L, Wu XY (2018b) Isorhamnetin prevents H2O2-induced oxidative stress in human retinal pigment epithelial cells. Mol Med Rep 17(1):648–652

    CAS  PubMed  Google Scholar 

  • World Health Organization (2021) Cardiovascular diseases (CVDs). Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  • Wu Q, Kroon PA, Shao H, Needs PW, Yang X (2018) Differential effects of quercetin and two of its derivatives, isorhamnetin and isorhamnetin-3-glucuronide, in inhibiting the proliferation of human breast-cancer MCF-7 cells. J Agric Food Chem 66(27):7181–7189

    Article  CAS  PubMed  Google Scholar 

  • Xiao PT, Liu SY, Kuang YJ, Jiang ZM, Lin Y, Xie ZS et al (2021) Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. J Ethnopharmacol 264:113380

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tang C, Tan S, Duan J, Tian H, Yang Y (2020) Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cell Mol Med 24(11):6253–6262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JH, Kim SC, Shin BY, Jin SH, Jo MJ, Jegal KH et al (2013) O-Methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation. Food Chem Toxicol 59:362–372

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Shin BY, Han JY, Kim MG, Wi JE, Kim YW et al (2014) Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol Appl Pharmacol 274(2):293–301

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zheng Y, Tursumamat N, Zhu M (2021) Synthesis of 3'-O-alkyl homologues and a biotin probe of isorhamnetin and evaluation of cytotoxic efficacy on cancer cells. Chem Biodivers 18(11):e2100301

    Article  CAS  PubMed  Google Scholar 

  • Yki-Järvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2(11):901–910

    Article  PubMed  Google Scholar 

  • Zaki Rashed KN (2020) Biological activities of Isorhamnetin: a review. Plant Sci 3(5):78–81

    Google Scholar 

  • Zhai T, Zhang X, Hei Z, Jin L, Han C, Ko AT et al (2021a) Isorhamnetin inhibits human gallbladder cancer cell proliferation and metastasis via PI3K/AKT signaling pathway inactivation. Front Pharmacol 12:628621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai T, Zhang X, Hei Z, Jin L, Han C, Ko AT et al (2021b) Corrigendum: isorhamnetin inhibits human gallbladder cancer cell proliferation and metastasis. Front Pharmacol 12:792330

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gu M, Cai W, Yu L, Feng L, Zhang L et al (2016) Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Sci Rep 6:19288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao TT, Yang TL, Gong L, Wu P (2018) Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes. Gene 666:92–99

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Tong M, Ou B, Liu C, Hu C, Yang Y (2019) Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med 43(1):117–126

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Instituto de Salud Carlos III (CIBERObn) under Grant CB12/03/30007. L. Arellano-García is a recipient of a predoctoral fellowship from the Basque Country Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Milton-Laskibar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gomez-Zorita, S. et al. (2023). Isorhamnetin: Current knowledge and potential benefits for disease management. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics