Skip to main content

Hot and Cold Extreme Temperature Risk and Resilience in the Baltic Sea Region: Agricultural Aspects

  • Living reference work entry
  • First Online:
SDGs in the European Region

Abstract

In accordance with the UN Goal 2 “Zero Hunger,” the target of which is, by 2030, to ensure sustainable agricultural systems that help maintain ecosystems and strengthen adaptive capacity to climate change, extreme weather, drought, flooding, and other disasters, the chapter discusses the influence of adverse weather conditions in different seasons of the year on crop production in the Baltic Sea region using wheat (Triticum aestivum L.) and, especially, winter wheat grain production, which accounts for most of the yield compared to the spring wheat form.

This chapter contributes to the understanding of the impact of climate change on important food and fodder crops, in particular winter wheat, which plays an important role in regional food security. The findings are based on an analysis of current scientific research and open statistical data (climatic indicators and yield data) into the effects of climate on the wheat yields and productivity.

The chapter highlights the multilateral nature of the relationship between agroecosystems productivity (grain yields) and climate change, from climate risks to the importance of agrobiodiversity (expanding the range of varieties and species of cultivated crops), to reduce the negative effects, such as the effects of heat and cold and the possibility of growing new crops in the northern part of Europe due to modern climate warming.

Based on a review of modern research literature, the following adaptation measures in grain production under conditions of increasing climate extremes and adverse weather conditions were identified. These are primarily the cultivation of new heat-, frost-, and disease-resistant crop varieties, improvement of long-term weather forecasting and climate change impact on crop yields, and maintenance of landscape-ecological potential of agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ambros P, Granvik M (2020) Trends in agricultural land in EU countries of the Baltic Sea region from the perspective of resilience and food security. Sustainability 12(14):5851

    Article  Google Scholar 

  • Bastos A, Gouveia CM, Trigo RM, Running SW (2014) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11(13):3421–3435. https://doi.org/10.5194/bg-11-3421-2014

    Article  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

    Article  CAS  Google Scholar 

  • Beck H, Zimmermann N, McVicar T et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  • Beillouin D, Schauberger B, Bastos A, Ciais P, Makowski D (2020) Impact of extreme weather conditions on European crop production in 2018. Philos Trans R Soc B 375(1810):20190510

    Article  Google Scholar 

  • Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Chang 11(SUPPL. 1):151–158. https://doi.org/10.1007/s10113-010-0173-x

    Article  Google Scholar 

  • Bönecke E, Breitsameter L, Brüggemann N, Chen TW, Feike T, Kage H, ..., Stützel H (2020) Decoupling of impact factors reveals the response of German winter wheat yields to climatic changes. Glob Chang Biol 26(6):3601–3626

    Google Scholar 

  • Boogaard H, Wolf J, Supit I, Niemeyer S, van Ittersum M (2013) A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop Res 143:130–142

    Article  Google Scholar 

  • Brás TA, Seixas J, Carvalhais N, Jägermeyr J (2021) Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ Res Lett 16(6):065012

    Article  Google Scholar 

  • Bregaglio S, Donatelli M, Confalonieri R (2013) Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron Sustain Dev 33(4):767–776

    Article  Google Scholar 

  • Briggle LW, Curtis BC (1987) Wheat worldwide. In: Wheat and wheat improvement. American Society of Agronomy, Inc.; Crop Science Society of America, Inc. Soil Science Society of America, Inc., Madison, Wisconsin, USA. 13:1–32

    Google Scholar 

  • Ceglar A, Turco M, Toreti A, Doblas-Reyes FJ (2017) Linking crop yield anomalies to large-scale atmospheric circulation in Europe. Agric For Meteorol 240:35–45

    Article  Google Scholar 

  • Ceglar A, Van der Wijngaart R, De Wit A, Lecerf R, Boogaard H, Seguini L, ..., Baruth B (2019) Improving WOFOST model to simulate winter wheat phenology in Europe: evaluation and effects on yield. Agric Syst 168, 168–180

    Google Scholar 

  • Ceglar A, Zampieri M, Toreti A, Dentener F (2019a) Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future. https://doi.org/10.1029/2019EF001178

  • Charmet G (2011) Wheat domestication: lessons for the future. C R Biol 334(3):212–220

    Article  Google Scholar 

  • Chatzopoulos T, Domínguez IP, Zampieri M, Toreti A (2019) Climate extremes and agricultural commodity markets: a global economic analysis of regionally simulated events. Weather Clim Extremes 27:100193. https://doi.org/10.1016/j.wace.2019.100193

  • Chawade A, Armoniené R, Berg G, Brazauskas G, Frostgård G, Geleta M, ..., Weih M (2018) A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiol Plant 164(4):442–451. https://doi.org/10.1111/ppl.12726

  • Debaeke P, Casadebaig P, Flenet F, Langlade N (2017) Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL Oilseeds Fats Crops Lipids 24(1). https://doi.org/10.1051/ocl/2016052

  • Hollins PD, Kettlewell PS, Peltonen-Sainio P (2004) Relationships between climate and winter cereal grain quality in Finland and their potential for forecasting. Agric Food Sci 13(3):295–308

    Article  Google Scholar 

  • Holmer B (2008) Fluctuations of winter wheat yields in relation to length of winter in Sweden 1866 to 2006. Clim Res 36(3):241–252

    Article  Google Scholar 

  • Hütsch BW, Jahn D, Schubert S (2019) Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J Agron Crop Sci 205(1):22–32

    Article  Google Scholar 

  • Kahiluoto H, Kaseva J, Balek J, Olesen JE, Ruiz-Ramos M, Gobin A, ..., Trnka M (2019) Decline in climate resilience of European wheat. Proc Natl Acad Sci U S A 116(1):123–128. https://doi.org/10.1073/pnas.1804387115

  • Klemeshev AP, Korneevets VS, Palmowski T, Studzieniecki Т, Fedorov GM (2017) Approaches to the definition of the Baltic Sea region. Baltic Region 9(4):4–20

    Article  Google Scholar 

  • Klepeckas M, Januškaitienė I, Vagusevičienė I, Juknys R (2020) Effects of different sowing time to phenology and yield of winter wheat. Agric Food Sci 29(4):346–358

    Article  CAS  Google Scholar 

  • Koppel R, Ingver A (2008) A comparison of the yield and quality traits of winter and spring wheat. Latvian J Agron 11:83–89

    Google Scholar 

  • Kos J, Janić Hajnal E, Šarić B, Jovanov P, Mandić A, Đuragić O, Kokić B (2018) Aflatoxins in maize harvested in the republic of Serbia over the period 2012–2016. Food Addit Contam B Surveill 11(4):246–255. https://doi.org/10.1080/19393210.2018.1499675

    Article  CAS  Google Scholar 

  • Kristensen K, Schelde K, Olesen JE (2011) Winter wheat yield response to climate variability in Denmark. J Agric Sci 149(1):33–47

    Article  Google Scholar 

  • Linina A, Ruza A (2018) The influence of cultivar, weather conditions and nitrogen fertilizer on winter wheat grain yield. Agron Res 16(1):147156

    Google Scholar 

  • Lopes MS (2022) Will temperature and rainfall changes prevent yield progress in Europe? Food Energy Secur 11:e372

    Article  Google Scholar 

  • Lüttger AB, Feike T (2018) Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor Appl Climatol 132(1):15–29

    Article  Google Scholar 

  • Mäkinen H, Kaseva J, Trnka M, Balek J, Kersebaum KC, Nendel C, ..., Kahiluoto H (2018) Sensitivity of European wheat to extreme weather. Field Crop Res 222:209–217. https://doi.org/10.1016/j.fcr.2017.11.008

  • Moriondo M, Bindi M, Kundzewicz ZW, Szwed M, Chorynski A, Matczak P, ..., Wreford A (2010) Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Chang 15(7):657–679. https://doi.org/10.1007/s11027-010-9219-0

  • Mueller B, Hauser M, Iles C, Rimi RH, Zwiers FW, Wan H (2015) Lengthening of the growing season in wheat and maize producing regions. Weather Clim Extrem 9:47–56. 2

    Article  Google Scholar 

  • Palosuo T, Hoffmann MP, Rötter RP, Lehtonen HS (2021) Sustainable intensification of crop production under alternative future changes in climate and technology: the case of the North Savo region. Agric Syst 190:103135

    Article  Google Scholar 

  • Parikka P, Hakala K, Tiilikkala K (2012) Expected shifts in fusarium species' composition on cereal grain in northern Europe due to climatic change. Food Addit Contam A Chem Analy Control Exposure Risk Assess 29(10):1543–1555. https://doi.org/10.1080/19440049.2012.680613

    Article  CAS  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Hakala K, Ojanen H (2009) Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agric Food Sci 18:1201

    Google Scholar 

  • Peltonen-Sainio P, Hakala K, Jauhiainen L (2011) Climate-induced overwintering challenges for wheat and rye in northern agriculture. Acta Agric Scand Sect B 61(1):75–83. https://doi.org/10.1080/09064710903535977

    Article  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Hakala K (2011a) Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. J Agric Sci 149(1):49–62

    Article  Google Scholar 

  • Peltonen-Sainio P, Palosuo T, Ruosteenoja K, Jauhiainen L, Ojanen H (2018) Warming autumns at high latitudes of Europe: an opportunity to lose or gain in cereal production? Reg Environ Chang 18(5):1453–1465.10

    Article  Google Scholar 

  • Persson T, Bergjord AK, Höglind M (2012) Simulating the effect of the North Atlantic oscillation on frost injury in winter wheat. Clim Res 53(1):43–53

    Article  Google Scholar 

  • Pinke Z, Decsi B, Jámbor A, Kardos MK, Kern Z, Kozma Z, Ács T (2022) Climate change and modernization drive structural realignments in European grain production. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-10670-6

  • Poole N, Donovan J, Erenstein O (2021) Agri-nutrition research: revisiting the contribution of maize and wheat to human nutrition and health. Food Policy 100:101976

    Article  Google Scholar 

  • Rankinen K, Cano Bernal JE, Holmberg M, Vuorio K, Granlund K (2019) Identifying multiple stressors that influence eutrophication in a Finnish agricultural river. Sci Total Environ 658:1278–1292. https://doi.org/10.1016/j.scitotenv.2018.12.294

    Article  CAS  Google Scholar 

  • Reinermann S, Gessner U, Asam S, Kuenzer C, Dech S (2019) The effect of droughts on vegetation condition in Germany: an analysis based on two decades of satellite earth observation time series and crop yield statistics. Remote Sens 11(15). https://doi.org/10.3390/rs11151783

  • Schittenhelm S, Langkamp-Wedde T, Kraft M, Kottmann L, Matschiner K (2020) Effect of two-week heat stress during grain filling on stem reserves, senescence, and grain yield of European winter wheat cultivars. J Agron Crop Sci 206(6):722–733

    Article  CAS  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1(1):1–5

    Article  Google Scholar 

  • Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4(3):178–202

    Article  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5(3):291–317

    Article  Google Scholar 

  • Skoglund M (2022) Climate variability and grain production in Scania, 1702-1911. Clim Past 18:405

    Article  Google Scholar 

  • Stratonovitch P, Semenov MA (2015) Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J Exp Bot 66(12):3599–3609

    Article  CAS  Google Scholar 

  • Supit I, Van Diepen CA, Boogaard HL, Ludwig F, Baruth B (2010) Trend analysis of the water requirements, consumption and deficit of field crops in Europe. Agric For Meteorol 150(1):77–88

    Article  Google Scholar 

  • Talukder ASMHM, McDonald GK, Gill GS (2014) Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Res 160:54–63. https://doi.org/10.1016/j.fcr.2014.01.013

    Article  Google Scholar 

  • Toreti A, Belward A, Perez-Dominguez I, Naumann G, Luterbacher J, Cronie O, ..., Zampieri M (2019) The exceptional 2018 European water seesaw calls for action on adaptation. Earth’s Future 7(6):652–663. https://doi.org/10.1029/2019EF001170

  • Trnka M, Olesen JE, Kersebaum KC, Skjelvåg AO, Eitzinger J, Seguin B, ..., Žalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17(7):2298–2318. https://doi.org/10.1111/j.1365-2486.2011.02396.x

  • Trnka M, Hlavinka P, Semenov MA (2015) Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J R Soc Interface 12(112):20150721

    Article  Google Scholar 

  • Trnka M, Olesen JE, Kersebaum KC, Rötter RP, Brázdil R, Eitzinger J, ..., Rajdl K (2016) Changing regional weather crop yield relationships across Europe between 1901 and 2012. Clim Res 70(2–3):195–214

    Google Scholar 

  • Ulén B, Bechmann M, Fölster J, Jarvie HP, Tunney H (2007) Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use Manag 23:5–15

    Article  Google Scholar 

  • Vogel E, Donat MG, Alexander LV, Meinshausen M, Ray DK, Karoly D, ..., Frieler K (2019) The effects of climate extremes on global agricultural yields. Environ Res Lett 14(5):0540

    Google Scholar 

  • Wiik L, Ewaldz T (2009) Impact of temperature and precipitation on yield and plant diseases of winter wheat in southern Sweden 1983–2007. Crop Prot 28(11):952–962

    Article  Google Scholar 

  • Zscheischler J, Orth R, Seneviratne SI (2017) Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields. Biogeosciences 14(13):3309–3320. https://doi.org/10.5194/bg-14-3309-2017

    Article  CAS  Google Scholar 

Internet Sources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Gaeva .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gaeva, D.V., Barinova, G.M., Krasnov, E.V. (2023). Hot and Cold Extreme Temperature Risk and Resilience in the Baltic Sea Region: Agricultural Aspects. In: Leal Filho, W., Dinis, M.A.P., Moggi, S., Price, E., Hope, A. (eds) SDGs in the European Region . Implementing the UN Sustainable Development Goals – Regional Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-030-91261-1_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91261-1_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91261-1

  • Online ISBN: 978-3-030-91261-1

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics