Skip to main content

Structured-Light Imaging

  • 31 Accesses


Amplitude component (AC); Digital light projection (DLP); Digital micromirror device (DMD); Direct component (DC); Spatial frequency domain imaging (SFDI); Structured-illumination reflectance imaging (SIRI); Three-dimensional (3-D)


Structured light refers to spatially nonuniform, structured or patterned light, as opposed to uniform or diffuse light that is uniformly or quasi-uniformly distributed in space.

Structured-light imaging refers to a technique that projects light with a known spatial pattern onto a scene and the light intensity would be attenuated by absorption and scattering of objects and the light pattern would be deformed by surface curvature of objects, thereby allowing imaging systems to acquire information on the optical property and surface geometry of these objects.


The use of light for imaging agricultural materials or processes has achieved significant progress over the past four decades. Imaging techniques that rely on the light in...

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Anderson ER, Vo-Dinh T, Cuccia DJ, Grundfest WS, Benaron DA, Durkin AJ, Cohn GE, Raghavachari R (2007) Detection of bruises on golden delicious apples using spatial-frequency-domain imaging. Proc SPIE 6430, Advanced Biomedical and Clinical Diagnostic Systems V, 64301O

    Google Scholar 

  • Cuccia DJ, Bevilacqua FP, Durkin AJ, Ayers FR, Tromberg BJ (2009) Quantitation and mapping of tissue optical properties using modulated imaging. J Biomed Opt 14(2):024012

    CrossRef  PubMed  Google Scholar 

  • Dognitz N, Wagnieres G (1998) Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry. Lasers Med Sci 13:55–65

    CrossRef  Google Scholar 

  • Fu L, Gao F, Wu J, Li R, Karkee M, Zhang Q (2020) Application of consumer RGB-D cameras for fruit detection and localization in field: a critical review. Comput Electron Agric 177:105687

    CrossRef  Google Scholar 

  • Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley, New York

    Google Scholar 

  • Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2):82–87

    CrossRef  CAS  PubMed  Google Scholar 

  • He X, Fu X, Rao X, Fu F (2017) Nondestructive determination of optical properties of a pear using spatial frequency domain imaging combined with phase-measuring profilometry. Appl Opt 56(29):8207–8215

    CrossRef  CAS  PubMed  Google Scholar 

  • Hu D, Lu R, Ying Y (2020) Spatial-frequency domain imaging coupled with frequency optimization for estimating optical properties of two-layered food and agricultural products. J Food Eng 277:109909

    CrossRef  CAS  Google Scholar 

  • Li J, Lu Y, Lu R (2023) Detection of early decay in navel oranges by structured-illumination reflectance imaging combined with image enhancement and segmentation. Postharvest Biol Technol 196:112162

    CrossRef  Google Scholar 

  • Lu Y, Lu R (2017) Development of a multispectral structured illumination reflectance imaging (SIRI) system and its application to bruise detection of apples. Trans ASABE 60(4):1379–1389

    CrossRef  Google Scholar 

  • Lu Y, Lu R (2018a) Fast bi-dimensional empirical mode decomposition as an image enhancement technique for fruit defect detection. Comput Electron Agric 152:314–323

    CrossRef  Google Scholar 

  • Lu Y, Lu R (2018b) Structured-illumination reflectance imaging coupled with phase analysis techniques for surface profiling of apples. J Food Eng 232:11–20

    CrossRef  Google Scholar 

  • Lu Y, Lu R (2018c) Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms. Trans ASABE 61(6):1831–1842

    CrossRef  Google Scholar 

  • Lu Y, Lu R (2019) Structured-illumination reflectance imaging for the detection of defects in fruit: analysis of resolution, contrast and depth-resolving features. Biosyst Eng 180:1–15

    CrossRef  Google Scholar 

  • Lu Y, Li R, Lu R (2016a) Fast demodulation of pattern images by spiral phase transform in structured-illumination reflectance imaging for detection of bruises in apples. Comput Electron Agric 127:652–658

    CrossRef  Google Scholar 

  • Lu Y, Li R, Lu R (2016b) Gram–Schmidt orthonormalization for retrieval of amplitude images under sinusoidal patterns of illumination. Appl Opt 55(25):6866–6873

    CrossRef  PubMed  Google Scholar 

  • Lu R, Van Beers R, Saeys W, Li C, Cen H (2020) Measurement of optical properties of fruits and vegetables: a review. Postharvest Biol Technol 159:111003

    CrossRef  Google Scholar 

  • Lu Y, Lu R, Zhang Z (2021) Detection of subsurface bruising in fresh pickling cucumbers using structured-illumination reflectance imaging. Postharvest Biol Technol 180:111624

    CrossRef  Google Scholar 

  • Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22(24):1905–1907

    CrossRef  CAS  PubMed  Google Scholar 

  • Sun Y, Lu R, Lu Y, Tu K, Pan L (2019) Detection of early decay in peaches by structured-illumination reflectance imaging. Postharvest Biol Technol 151:68–78

    CrossRef  Google Scholar 

  • Sun Z, Xie L, Hu D, Ying Y (2021) An artificial neural network model for accurate and efficient optical property mapping from spatial-frequency domain images. Comput Electron Agric 188:106340

    CrossRef  Google Scholar 

  • Syed TN, Liu J, Zhou X, Zhao S, Yuan Y, Mohamed SHA, Lakhiar IA (2019) Seedling-lump integrated non-destructive monitoring for automatic transplanting with Intel RealSense depth camera. Artif Intell Agric 3:18–32

    Google Scholar 

  • Wang W, Li C (2014) Size estimation of sweet onions using consumer-grade RGB-depth sensor. J Food Eng 142:153–162

    CrossRef  Google Scholar 

  • Xia C, Wang L, Chung BK, Lee JM (2015) In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation. Sensors 15(8):20463–20479

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang S (2018) High-speed 3D shape measurement with structured light methods: a review. Opt Lasers Eng 106:119–131

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yuzhen Lu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Lu, Y., Cai, J. (2023). Structured-Light Imaging. In: Zhang, Q. (eds) Encyclopedia of Smart Agriculture Technologies. Springer, Cham.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89123-7

  • Online ISBN: 978-3-030-89123-7

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences