Skip to main content

Erythrocyte Acetylcholinesterase as a Biomarker of Environmental Lead Exposure

Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Lead is a prime, ubiquitous, environmental toxicant and multi-organ poison. One of the most recognized deleterious effects of lead exposure is neurotoxicity, which may at least in part arise from perturbation in cholinergic neurotransmission with possible impact on acetylcholinesterase activity. Although primarily located at the neuromuscular junction and cholinergic brain synapses, this pivotal enzyme is also present in peripheral cells such as human erythrocytes. Erythrocyte acetylcholinesterase, which correlates positively with brain acetylcholinesterase and represents neurotoxic targets in brain, is a conventional biomarker for the neurotoxic effects of pesticide exposure. However, recent reports have unveiled the sensitivity of this extra-neural enzyme to other environmental contaminants particularly lead, bringing to attention its relevance in the assessment of environmental lead exposure and lead-induced neurotoxicity. This chapter summarizes the evidence of the remarkable diversity of erythrocyte acetylcholinesterase as a biomarker of environmental lead exposure and lead-induced alterations in human cholinergic system as well as the possible factors surrounding its applicability in this regard.

Keywords

  • Cholinergic neurotransmission
  • Environmental lead exposure
  • Erythrocyte acetylcholinesterase
  • Environmental contaminant
  • Lead
  • Lead-induced neurotoxicity
  • Multiorgan poison
  • Neurotoxic effects
  • Toxicant
  • Toxic metal

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

BChE:

Butyrylcholinesterase

BLL:

Blood lead level

CNS:

Central nervous system

LIN:

Lead-induced neurotoxicity

Pb:

Lead

References

  • Ademuyiwa OU, Ugbaja RN, Rotimi SO, et al. Erythrocyte acetylcholinesterase activity as a surrogate indicator of lead-induced neurotoxicity in occupational lead exposure in Abeokuta, Nigeria. Environ Toxicol Pharmacol. 2007;24(2):183–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Advisory Committee on Childhood Lead Poisoning Prevention (ACCLPP). Low-level lead exposure harms children: a renewed call for primary prevention. (2012). http://www.cdc.gov/nceh/lead/ACCLPP/Final_Document_030712.pdf. Accessed 15 Nov 2021.

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for lead. (2020). https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=96&tid=22. Accessed 12 Dec 2021.

  • Al Osman M, Yang F, Massey IY. Exposure routes and health effects of heavy metals on children. Biometals. 2019;32(4):563–73.

    CrossRef  CAS  PubMed  Google Scholar 

  • Anetor JI, Adeniyi FAA, Tailor GOL. Neurotoxic implications of some biochemical changes in lead workers. Afr J Med Pharm Sci. 2002;6:33–9.

    Google Scholar 

  • Anetor JI, Anetor G, Iyanda A, et al. Environmental chemicals and human neurotoxicity: magnitude, prognosis and markers. Afr J Biomed Res. 2008;11:1–12.

    Google Scholar 

  • Anetor JI, Igharo OG, Anetor GO, et al. The Zamfara lead poisoning episode in Nigeria: an indication for children’s environmental toxicology and micronutrient Centre. Toxicol Digest. 2016;1:23–33.

    Google Scholar 

  • Anger WK. Worksite behavioral research: results, sensitive methods, test batteries and the transition from laboratory data to human health. Neurotoxicology. 1990;11:629–720.

    Google Scholar 

  • Ani M, Moshtaghie AA, Aghadavood M. Protective effects of selenium and zinc on the brain acetyl cholinesterase activity in lead intoxified rat. Res Pharm Sci. 2007;1(2):80–4.

    Google Scholar 

  • Assis CR, Linhares AG, Cabrera MP, et al. Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights. Environ Sci Pollut Res Int. 2018;25(19):18364–76.

    CrossRef  CAS  PubMed  Google Scholar 

  • Attina TM, Trasande L. Economic costs of childhood lead exposure in low-and middle-income countries. Environ Health Perspect. 2013;121:1097–102.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Auf der Heide E. Cholinesterase inhibitors: including pesticides & chemical warfare nerve agents section. (2007). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Case+studies+in+Environmental+Medicine+cholinesterase+inhibitors%3A+including+pesticides+and+chemical+warfare+nerve+agents&btnG=. Accessed 22 Jan 2022.

  • Bartels CF, Zelinski T, Lockridge O. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism. Am J Hum Genet. 1993;52(5):928–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bressler J, Goldstein GW. Mechanism of lead neurotoxicity. Biochem Pharmacol. 1991;41:479–84.

    CrossRef  CAS  PubMed  Google Scholar 

  • Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland. Int J Environ Res Public Health. 2020;17(12):4385. https://doi.org/10.3390/ijerph17124385.

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Chowdhury R, Ramond A, O’Keeffe LM, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2018;362 https://doi.org/10.1136/bmj.k3310.

  • Ciaccio C, Coletta A, Coletta M. Role of hemoglobin structural-functional relationships in oxygen transport. Mol Asp Med. 2021;2021 https://doi.org/10.1016/j.mam.2021.101022.

  • Crump KS, Van Landingham C, Bowers TS et al (2013) A statistical reevaluation of the data used in the Lanphear et al (2005) pooled-analysis that related low levels of blood lead to intellectual deficits in children. Crit Rev Toxicol 43(9):785–799.

    Google Scholar 

  • Dutta S, Gorain B, Choudhury H, et al. Environmental and occupational exposure of metals and female reproductive health. Environ Sci Pollut Res Int. 2021; https://doi.org/10.1007/s11356-021-16581-9.

  • Ellman GL, Courtney KD, Andres V Jr, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fang Y, Lu L, Liang Y, et al. Signal transduction associated with lead-induced neurological disorders: a review. Food Chem Toxicol. 2021; https://doi.org/10.1016/j.fct.2021.112063.

  • Felsztyna I, Turina AV, Perillo MA, et al. Sensing molecular organizational changes through the catalytic activity of acetylcholinesterase from erythrocyte membranes in Langmuir-Blodgett films. Biochim Biophys Acta Biomembr. 2020;1862(5) https://doi.org/10.1016/j.bbamem.2020.183188.

  • Frasco MF, Fournier D, Carvalho F, et al. Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers. 2005;10(5):360–75.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fu H, Xia Y, Chen Y, et al. Acetylcholinesterase is a potential biomarker for a broad spectrum of organic environmental pollutants. Environ Sci Technol. 2018;52(15):8065–74.

    CrossRef  CAS  PubMed  Google Scholar 

  • Galadima A, Okoronkwo MU, Mustapha DG, et al. Petrol in Nigeria: a fuel or a killer? Is shift to hydroisomerisation not overdue? Elixir Pollut. 2012;43:6893–7.

    Google Scholar 

  • Gambelunghe A, Sallsten G, Borné Y, et al. Low-level exposure to lead, blood pressure, and hypertension in a population based cohort. Environ Res. 2016;149:157–63.

    CrossRef  CAS  PubMed  Google Scholar 

  • Godwin HA. The biological chemistry of lead. Curr Opin Chem Biol. 2001;5(2):223–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Goldstein GW. Neurologic concepts of lead poisoning in children. Pediatr Ann. 1992;21(6):384–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gupta VK, Pal R, Siddiqi NJ, et al. Acetylcholinesterase from human erythrocytes as a surrogate biomarker of lead induced neurotoxicity. Enzyme Res. 2015; https://doi.org/10.1155/2015/370705.

  • Hajjawi OS. Acetylcholinesterase in human red blood cells. Eur J Sci Res. 2012;75(4):510–22.

    Google Scholar 

  • Hilário S, Saldanha C, Silva JME. An in vitro study of adrenaline effect on human erythrocyte properties in both gender. Clin Hemorheol Microcirc. 2003;28(2):89–98.

    PubMed  Google Scholar 

  • Hsu YK, Sabatini BJ. A geochemical characterization of lead ores in China: an isotope database for provenancing archaeological materials. PLoS One. 2019;14(4):e0215973.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Ocampo I, Dautan D, Gut NK, et al. Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Sci Rep. 2021;11(1):1–4.

    CrossRef  CAS  Google Scholar 

  • Institute for Health Metrics and Evaluation (IHME). University of Washington. (2019). https://globalhealth.washington.edu/focus-area/health-metrics-and-evaluation. Accessed 11 Dec 2021.

  • Johnson JL, Thomas JL, Emani S. Measuring carbamoylation and decarbamoylation rate constants by continuous assay of AChE. Chem Biol Interact. 2005;157–158:384–5. https://doi.org/10.1016/j.cbi.2005.10.066.

    CrossRef  CAS  PubMed  Google Scholar 

  • Jung W, Kim Y, Lihm H, et al. Associations between blood lead, cadmium, and mercury levels with hyperuricemia in the Korean general population: a retrospective analysis of population-based nationally representative data. Int J Rheum Dis. 2019;22(8):1435–44.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kasten-Jolly J, Lawrence DA. The cationic (calcium and lead) and enzyme conundrum. J Toxicol Environ Health B Crit Rev. 2018;21(6–8):400–13.

    CrossRef  CAS  PubMed  Google Scholar 

  • Khan MI, Mahdi AA, Islam N, et al. Assessment of erythrocyte acetylcholine esterase activities in painters. Indian J Occup Environ Med. 2009;13(1):23–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kordas K, Burganowski R, Roy A, et al. Nutritional status and diet as predictors of children’s lead concentrations in blood and urine. Environ Int. 2018;111:43–51.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lionetto MG, Caricao R, Calisi A, et al. Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Res Int. 2013;2013:321213. https://doi.org/10.1155/2013/321213.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Paniagua D, Gómez-Martín A, Gil F, et al. Activity and determinants of cholinesterases and paraoxonase-1 in blood of workers exposed to non-cholinesterase inhibiting pesticides. Chem Biol Interact. 2016;259:160–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ma Y, He X, Qi K, et al. Effects of environmental contaminants on fertility and reproductive health. J Environ Sci. 2019;77:210–7.

    CrossRef  Google Scholar 

  • Majidi M, Delirrad M, Banagozar MA, et al. Cholinesterase level in erythrocyte or serum: which is more predictive of the clinical outcome in patients with acute organophosphate poisoning? Iran J Toxicol. 2018;12(5):23–6.

    CrossRef  Google Scholar 

  • Mallender WD, Szegletes T, Rosenberry TL. Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway. Biochemistry. 2000;39(26):7753–63.

    CrossRef  CAS  PubMed  Google Scholar 

  • Manzo L, Castoldi AF, Coccini T, et al. Mechanisms of neurotoxicity: applications to human biomonitoring. Toxicol Lett. 1995;77(1–3):63–72.

    CrossRef  CAS  PubMed  Google Scholar 

  • Manzo L, Artigas F, Martınez E, et al. Biochemical markers of neurotoxicity. A review of mechanistic studies and applications. Hum Exp Toxicol. 1996;15(1):20–35.

    Google Scholar 

  • McPhalen CA, Strynadka NCJ, James MNG. Calcium-binding sites in proteins: structural perspective. Adv Protein Chem. 1991;42:77–144.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nakhaee S, Amirabadizadeh A, Brent J, et al. Impact of chronic lead exposure on liver and kidney function and haematologic parameters. Basic Clin Pharmacol Toxicol. 2019;124(5):621–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nehru B, Sidhu P. Behavior and neurotoxic consequences of lead on rat brain followed by recovery. Biol Trace Elem Res. 2001;84(1–3):113–21.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nwobi NL, Adedapo SK, Olukolade O. Positive and inverse correlation of blood lead level with erythrocyte acetylcholinesterase and intelligence quotient in children: implications for neurotoxicity. Interdiscip Toxicol. 2019a;12(3):136–42.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nwobi NL, Adedapo KS, Oyinlade OA, et al. Urinary calcium: a promising predictive biomarker for early recognition of environmental lead exposure in children. Int J Res Med Sci. 2019b;7(6):2265–72.

    CrossRef  Google Scholar 

  • Nwobi NL, Nwobi JC, Adejumo EN, et al. Blood lead levels, calcium metabolism and bone-turnover among automobile technicians in Sagamu, Nigeria: implications for elevated risk of susceptibility to bone diseases. Toxicol Ind Health. 2021;37(11):705–13.

    CrossRef  CAS  PubMed  Google Scholar 

  • Obeng-Gyasi E. Sources of lead exposure in various countries. Rev Environ Health. 2019;34(1):25–34.

    CrossRef  CAS  PubMed  Google Scholar 

  • Obeng-Gyasi E, Armijos RX, Weigel MM, et al. Cardiovascular-related outcomes in US adults exposed to lead. Int J Environ Res Public Health. 2018;15(4):759. https://doi.org/10.3390/ijerph15040759.

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Olchowik GJ, Widomska M, Tomaszewski M, et al. The influence of lead on the biomechanical properties of bone tissue in rats. Ann Agric Environ Med. 2014;21(2):278–81.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ortega RD, González EDF, Blanco AT, et al. Cognitive impairment induced by lead exposure during lifespan: mechanisms of lead neurotoxicity. Toxics. 2021;9(2):23. https://doi.org/10.3390/toxics9020023.

    CrossRef  CAS  Google Scholar 

  • Osorio-Yáñez C, Sanchez-Guerra M, Solano M, et al. Metal exposure and bone remodeling during pregnancy: results from the PROGRESS cohort study. Environ Pollut. 2021;282:116962. https://doi.org/10.1016/j.envpol.2021.116962.

    CrossRef  CAS  PubMed  Google Scholar 

  • Patharkar SA, Benwal SJ, Nerurkar AV, et al. Estimation of urinary delta aminolevulinic acid levels in garage workers as an index of lead exposure. Indian J Med Biochem. 2019;23(3):312–5.

    CrossRef  Google Scholar 

  • Pelclová D, Šťastná J, Vlčková S, et al. Is Central Europe safe from environmental Lead intoxications? A case series. Cent Eur J Public Health. 2016;24(2):120–2.

    CrossRef  PubMed  Google Scholar 

  • Phyu MP, Tangpong J. Sensitivity of acetylcholinesterase to environmental pollutants. J Health Res. 2014;28(4):277–83.

    Google Scholar 

  • Prall YG, Gambhir KK, Ampy FR. Acetylcholinesterase: an enzymatic marker of human red blood cell aging. Life Sci. 1998;63(3):177–84.

    CrossRef  CAS  PubMed  Google Scholar 

  • Qader A, Rehman K, Akash M. Genetic susceptibility of δ-ALAD associated with lead (Pb) intoxication: sources of exposure, preventive measures, and treatment interventions. Environ Sci Pollut Res Int. 2021;28:44818–32.

    CrossRef  CAS  PubMed  Google Scholar 

  • Qi S, He J, Zheng H, et al. Zinc supplementation increased bone mineral density, improves bone histomorphology, and prevents bone loss in diabetic rat. Biol Trace Elem Res. 2020;194(2):493–501.

    CrossRef  CAS  PubMed  Google Scholar 

  • Quinn DM. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev. 1987;87(5):955–79.

    CrossRef  CAS  Google Scholar 

  • Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep. 2019;9:14225. https://doi.org/10.1038/s41598-019-50654-7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GR, Basha MR, Devi CB, et al. Lead induced effects on acetylcholinesterase activity in cerebellum and hippocampus of developing rat. Int J Dev Neurosci. 2003;21(6):347–52.

    CrossRef  CAS  PubMed  Google Scholar 

  • Reddy GR, Devi BC, Chetty CS. Developmental lead neurotoxicity: alterations in brain cholinergic system. Neurotoxicology. 2007;28(2):402–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Reuben A, Elliott ML, Abraham WC, et al. Association of childhood lead exposure with MRI measurements of structural brain integrity in midlife. JAMA. 2020;324(19):1970–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Rodríguez J, Mandalunis PM. A review of metal exposure and its effects on bone health. J Toxicol. 2018;2018:4854152. https://doi.org/10.1155/2018/4854152.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberry TL. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975;43:103–218.

    CAS  PubMed  Google Scholar 

  • Rosenberry TL, Soggin DM. Structure of human erythrocyte acetylcholinesterase. Characterization of inter-subunit disulfide bonding and detergent interaction. J Biol Chem. 1984;259(9):5643–52.

    CrossRef  CAS  PubMed  Google Scholar 

  • Rosenberry TL, Brazzolotto X, Macdonald IR, et al. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study. Molecules. 2017;22(12):2098. https://doi.org/10.3390/molecules22122098.

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Ruckart PZ, Jones RL, Courtney JG. Update of the blood lead reference value – United States, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(43):1509–12.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldanha C. Human erythrocyte acetylcholinesterase in health and disease. Molecules. 2017;22(9):1499. https://doi.org/10.3390/molecules22091499.

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Seppalainen AM. Neurophysiological approaches to the detection of early neurotoxicity in humans. Crit Rev Toxicol. 1988;18(4):245–98.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sharma P, Chambial S, Shukla KK. Lead and neurotoxicity. Indian J Clin Biochem. 2015;30(1):1–2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Silva-Herdade AS, Saldanha C. Effects of acetylcholine on an animal model of inflammation. Clin Hemorheol Microcirc. 2013;53(1–2):209–16.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sommar JN, Hedmer M, Lundh T, et al. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J Expo Sci Environ Epidemiol. 2014;24(1):51–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Soreq H, Seidman S. Acetylcholinesterase – new roles for an old actor. Nat Rev Neurosci. 2001;2(4):294–302.

    CrossRef  CAS  PubMed  Google Scholar 

  • Suhail M, Rizvi SI. Erythrocyte membrane acetylcholinesterase in type 1 (insulin-dependent) diabetes mellitus. Biochem J. 1989;259(3):897–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Szegletes T, Mallender WD, Rosenberry TL. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Biochemistry. 1998;37(12):4206–16.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tsakiris S, Angelogianni P, Schulpis KH, et al. Protective effect of l-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem. 2000;33(2):103–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tsigelny I, Shindyalov IN, Bourne PE, et al. Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Protein Sci. 2000;9(1):180–5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda E, Kinoshita T, Terasawa T. Acetylcholinesterase and lymphocyte function-associated antigen 3 found on decay-accelerating factor-negative erythrocytes from some patients with paroxysmal nocturnal hemoglobinuria are lost during erythrocyte aging. Blood. 1990;75(3):762–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Vlasak T, Jordakieva G, Gnambs T, et al. Blood lead levels and cognitive functioning: a meta-analysis. Sci Total Environ. 2019;668:678–84.

    CrossRef  CAS  PubMed  Google Scholar 

  • Vorvolakos TS, Arseniou M, Samakouri. There is no safe threshold for lead exposure: Α literature review. Psychiatriki. 2016;27(3):204–14.

    CrossRef  PubMed  Google Scholar 

  • World Health Organisation (WHO). Childhood lead poisoning. (2010). https://www.who.int/ceh/publications/leadguidance.pdf. Accessed 29 Dec 2021.

  • World Health Organisation (WHO). WHO guideline for clinical management of exposure to lead. (2021). https://apps.who.int/iris/bitstream/handle/10665/347360/9789240037045-eng.pdf. Accessed 28 Jan 2022.

  • Wu HM, Lin-Tan DT, Wang ML, et al. Lead level in seminal plasma may affect semen quality for men without occupational exposure to lead. Reprod Biol Endocrinol. 2012;10(1):1–5.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nnenna L. Nwobi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Nwobi, N.L., Nwobi, J.C., Ogunbona, R.A., Adetunji, A.O., Anetor, J.I. (2022). Erythrocyte Acetylcholinesterase as a Biomarker of Environmental Lead Exposure. In: Patel, V.B., Preedy, V.R., Rajendram, R. (eds) Biomarkers in Toxicology. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-87225-0_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87225-0_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87225-0

  • Online ISBN: 978-3-030-87225-0

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences