Skip to main content

The Plasma State

  • Reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

This chapter serves as an introduction to the vast and rapidly growing field of plasmas science and technology. A brief introduction defining what is a plasma and the different types of plasmas, whether natural or man-made, is presented. This is followed by a review of the main characteristics and applications of man-made plasmas. Separate sections deal with nonequilibrium, man-made plasmas, whether glow discharges, corona discharges, dielectric barrier discharges (DBD), or microwave plasmas and their respective industrial applications. Thermal, man-made plasmas are discussed next, identifying the basic concepts for the generation of such plasmas followed by a description of principal thermal plasma sources and their respective industrial applications. Whenever applicable, forward referencing is made to subsequent chapters in the handbook where further details are given on the different subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Alternating current

CLTE:

Complete local thermodynamic equilibrium

CVD:

Chemical vapor deposition

DBD:

Dielectric barrier discharges

DC:

Direct current

DLC:

Diamond-like carbon

EAF:

Electric arc furnace

EB-PVD:

Electron beam-physical vapor deposition

EM:

Electromagnetic

ER:

Erosion rate

GM:

General motors

HID:

High intensity discharge

HSW:

Hospital solid waste

ICP:

Inductively coupled plasma

ICP-MS:

Inductively coupled plasma mass spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectroscopy

LLRW:

Low-level radioactive waste

LTE:

Local thermodynamic equilibrium

LUX:

Lux per Watt

MIG:

Metal inert gas

MIPs:

Microwave-induced plasmas

MSW:

Municipal solid waste

NASA:

National Aeronautics and Space Administration

PA-CVD:

Plasma-assisted chemical vapor deposition

PA-PVD:

Plasma-assisted physical vapor deposition

PLTE:

Partial local thermodynamic equilibrium

PS-PVD:

Plasma sprayed-physical vapor deposition

PVD:

Plasma vapor deposition

RF:

Radio frequency

SSW:

Sewage sludge waste

TIG:

Tungsten inert gas

TPH:

Ton per hour

TWD:

Traveling wave discharges

UV:

Ultraviolet

VOCs:

Volatile organic compounds

References

  • Aronsson B-O, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35(1):49–73

    Article  Google Scholar 

  • Aschwanden MJ (2004) Physics of the solar corona. An introduction. Praxis Publishing, Berlin

    Google Scholar 

  • Babat GI (1947) Electrodeless discharges and some allied problems. J Inst Elec Eng 94:27–37

    Google Scholar 

  • Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ (eds) (2005) Non-equilibrium air plasmas at atmospheric pressure. IOP Publishing, Bristol

    Google Scholar 

  • Bittencourt JA (2004) Fundamental of plasma physics. Springer, 678 p

    Google Scholar 

  • Boulos MI (1985) The inductively coupled RF (Radio Frequency) plasma. Pure Appl Chem 57:1321

    Article  Google Scholar 

  • Boulos MI (1992) R.F. induction plasma spraying, state-of-the-art review. J Thermal Spray Technol 1:33–40

    Article  Google Scholar 

  • Boulos MI (1997) The inductively coupled radio frequency plasma. High Temp Mat Process 1:17–39

    Article  Google Scholar 

  • Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas fundamentals and applications. Plenum Press, New York

    Google Scholar 

  • Brown SC Jr (1959) Basic data of plasma physics. Wiley, New York

    Google Scholar 

  • Bunshah RF (2001) Handbook of hard coatings: deposition technologies properties and applications. Elsevier, Norwich

    Google Scholar 

  • Cambel AB (1963) Plasma physics and magneto fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Camacho SL (1986) Plasma technology: its technical merits and applications potential, high temperature process, High Tech. Show, Osaka Japan

    Google Scholar 

  • Chang CH, Pfender E (1990) Non-equilibrium modeling of low-pressure argon plasma jets, Part I: Laminar flow. Plasma Chem Plasma Process 10:473–491

    Article  Google Scholar 

  • Chapman BN (1980) Glow discharge processes: sputtering and plasma etching. Wiley, New York

    Google Scholar 

  • Cobine JD (1958) Gaseous conductors. Dover Publication, New York

    MATH  Google Scholar 

  • Dobrynin D, Friedman G, Fridman A, Starikovskiy A (2011) Inactivation of bacteria using dc corona discharge: role of ions and humidity. New J Phys 13:103033

    Article  Google Scholar 

  • Eckert HU (1971) Measurement of the r.f. magnetic field distribution in a thermal induction plasma. J Appl Phys 42:3108–3113

    Article  Google Scholar 

  • Eckert HU (1972) Dual magnetic probe system for phase measurements in thermal induction plasmas. J Appl Phys 43:2707–2713

    Article  Google Scholar 

  • Eckert HU (1974) The induction arc: a state of the art review. High Temp 6:99–134

    Google Scholar 

  • Edels H (1973) Properties of the high pressure ultra high current arc. In: Proceedings of the 11th international conference on phenomenon in ionized gases. Czechoslovak Academy of Sciences, Institute of Physics, Prague, Czechoslovakia, 18040 Prague 8, Na Slovance 2, CSSR

    Google Scholar 

  • Eliot D (1991) Technologie et spécificité du découpage par plasma dans “les plasmas dans l'industrie” (Pub.) Dopée Avon, France, 229–241 (in French)

    Google Scholar 

  • Erkens G, Vetter J, Müller J, auf dem Brinke T, Fromme M, Mohnfeld A (2011) Plasma-assisted surface coating processes, methods, systems and applications, Sulzer-Metco, Süddeutscher Verlag onpact GmbH, 81677 Munich

    Google Scholar 

  • Fauchais P, Heberlein J, Boulos M (2014) Thermal spray fundamentals. Springer, New York

    Google Scholar 

  • Feinman J (1987) Plasma technology in metallurgical processing. Iron and Steel Society, Warrendale

    Google Scholar 

  • Finch R (2007)Welder's handbook, a guide to plasma cutting, oxyacetylene, ARC, MIG and TIG Welding, Revised HP1513

    Google Scholar 

  • Finkelnburg W, Maecker H (1956) Electric arcs and thermal plasmas. In: Encyclopedia of physics, vol 22. Springer, Berlin

    Google Scholar 

  • Frey H, Khan HR (2013) Handbook of thin film technology. Springer, Berlin, p 550

    Google Scholar 

  • Fridman A (2004) Plasma physics and engineering. Taylor & Francis, New York

    Book  Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Heberlein J (1999) Electrode phenomena in plasma torches, in heat and mass transfer under plasma conditions. Ann NY Acad Sci 891:14–27

    Article  Google Scholar 

  • Heberlein J, Murphy AB (2008) Thermal plasma waste treatment, topical review. J Phys D Appl Phys 41:053001 (20 pp)

    Article  Google Scholar 

  • Hippler R, Kersten H, Schmidt M, Schoenbach KH (eds) (2008) Low temperature plasmas: fundamentals, technologies and techniques, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Howatson AM (2011) An introduction to gas discharges. Pergamon Press, Oxford (1965)

    Google Scholar 

  • Jogi I (2011) Methods of plasma generation and plasma sources. Plasma training course and Summer school, University of Tartu, Warsaw/Szczecin

    Google Scholar 

  • Kenneth Marcus R, Broekaert JAC (eds) (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, Chichester

    Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications, invited review. Plasma Chem Plasma Process 23(1):1–46

    Article  Google Scholar 

  • Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens. History and future potential of dielectric-barrier discharges. Pure Appl Chem 71(10):1819–1828

    Article  Google Scholar 

  • Lebedev Yu A (2010) Microwave discharges: generation and diagnostics. J Phys Conf Ser 257:012016

    Article  Google Scholar 

  • Lucas W (1990) TIG and plasma welding, 1st edn. Woodhead Publishing, Abington

    Book  Google Scholar 

  • MacRae DR (1988) Plasma reactors for process metallurgy. Pure Appl Chem 60(5):721–725

    Article  Google Scholar 

  • Marcus RK, Broekaert JAC (eds) (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, Chichester

    Google Scholar 

  • Mishra S (2012) Thermal plasma application in metallurgy plasma processing of materials. LAP Lambert Academic Publishing, Saarbrücken, p 148

    Google Scholar 

  • Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  • Moisan M, Pelletier J (eds) (1992) Microwave excited plasmas, plasma technology, 4th edn. Elsevier, Amsterdam/London/New York/Tokyo

    Google Scholar 

  • Morishita T (1991) Coatings by 250 kW Plasma Jet Spray System. In: Blum-Sandmeier S, Eschnauer H, Huber P, Nicoll A (eds) Proceedings of the 2nd Plasma Technik symposium, Luzern, Switzerland. (pub.) Plasma Technik, Wohlen, pp 137–145

    Google Scholar 

  • Murphy AB, McAllister T (2001) Modeling of the physics and chemistry of thermal plasma waste destruction. Phy Plasmas 8(5):2565–2571

    Article  Google Scholar 

  • Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys 39:R423

    Article  Google Scholar 

  • Neuschutz D (1992) Plasma applications in process metallurgy. High Temp Chem Process 1:511–525

    Google Scholar 

  • Nijdam S, van Veldhuizen E, Bruggeman P, Ebert U (2012) An introduction to non-equilibrium plasmas at atmospheric pressure, Chapter 1. In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis, in gases and liquids. Wiley, Weinheim

    Google Scholar 

  • Parvulescu VI, Magureanu M, Lukes P (eds) (2012) Plasma chemistry and catalysis in gases and liquids. Wiley, Weinheim

    Google Scholar 

  • Peratt AL (1992) Physics of the plasma universe. Springer, New York

    Book  MATH  Google Scholar 

  • Pfender E (1978) Electric arcs and arc gas heaters, Chapter 5. In: Hirsh MN, Oskam HJ (eds) Gaseous electronics, vol 1. Academic, New York, pp 291–398

    Chapter  Google Scholar 

  • Pfender E (1999) Thermal plasma technology: where do we stand and where are we going. Plasma Chem Plasma Process 19(1):1–31

    Article  MathSciNet  Google Scholar 

  • Rao L, Rivard F, Carabin P (2013) Thermal plasma torches for metallurgical applications. In: 4th international symposium on high-temperature metallurgical processing, TMS meeting San Antonio TX, USA

    Google Scholar 

  • Reed TB (1961a) Induction coupled plasma torch. J Appl Phys 32:821–824

    Article  Google Scholar 

  • Reed TB (1961b) Growth of refractory crystals using the induction plasma torch. J Appl Phys 32:2534–2536

    Article  Google Scholar 

  • Suplee C (2009) The plasma universe. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Thomas GP (2012) Air carbon arc cutting: fundamentals, industrial applications and benefits, azom.com

    Google Scholar 

  • Uhm HS, Hong YC, Shin DH (2006) Microwave plasma torch and its applications, Department of Molecular Science and Technology, Ajou University, Korea

    Google Scholar 

  • von Niessen K, Gindrat M (2011) Plasma sprayed-PVD: a new thermal spray process to deposit out of the vapor phase. J Thermal Spray Technol 20(4):736–743

    Article  Google Scholar 

  • Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding – modeling and experimental optimization. J Therm Spray Technol 15(4):779–784

    Article  Google Scholar 

  • Zhou Q, Li H, Liu F, Guo S, Guo W, Xu P (2008) Effects of nozzle length and process parameters on highly constricted oxygen plasma cutting arc. Plasma Chem Plasma Process 28:729

    Article  Google Scholar 

  • Zhukov MF (1979) Basical calculations of plasmatrons (in Russian; Nauka, Novosibirsk, USSR)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2023). The Plasma State. In: Boulos, M.I., Fauchais, P.L., Pfender, E. (eds) Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-030-84936-8_1

Download citation

Publish with us

Policies and ethics