Skip to main content

Active and Facilitated Transport in Drug Absorption

  • Reference work entry
  • First Online:
The ADME Encyclopedia

Synonyms

Carrier-mediated transport

Definition

Whereas most drugs are absorbed by simple diffusion across biological barriers, the absorption of some therapeutic agents proceeds through carrier-mediated transport. Evolutionary speaking, the transporters that facilitate the absorption of drugs have emerged to mediate the traffic and compartmentalization of physiologic compounds that, due to their physicochemical features (hydrophilicity and/or size) would otherwise not be able to permeate through lipophilic membranes. Amino acids, peptides, nucleosides, sugars, and vitamins are among the physiological compounds that use carrier-mediated transport. Consequently, only drugs that in some way mimic or resemble such physiological compounds can “hijack” (be recognized by) those transporters to get absorbed (see Fig. 1for some examples). Reasonably, active transport and facilitated diffusion will be particularly significant for oral medications, as high levels of relevant transporters that...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul A. Drug absorption and bioavailability. In: Raj G, Raveendran R, editors. Introduction to basics of pharmacology and toxicology. Singapore: Springer; 2019. p. 81–8.

    Chapter  Google Scholar 

  2. Cao X, Yu L, Sun D. Drug absorption principles. In: Krishna R, Yu L, editors. Biopharmaceutics applications in drug development. Boston: Springer; 2008. p. 75–100.

    Chapter  Google Scholar 

  3. Franke RM, Gardner ER, Sparreboom A. Pharmacogenetics of drug transporters. Curr Pharm Des. 2010;16:220–30.

    Article  CAS  PubMed  Google Scholar 

  4. Yiannakopoulou E. Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications. Pharmacogenomics J. 2013;13:105–9.

    Article  CAS  PubMed  Google Scholar 

  5. Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murakami S, Okada U, van Veen HW. Tripartite transporters as mechanotransmitters in periplasmic alternating-access mechanisms. FEBS Lett. 2020; https://doi.org/10.1002/1873-3468.13929. Epub ahead of print

  7. Eraly SA. Implications of the alternating access model for organic anion transporter kinetics. J Membr Biol. 2008;226:35–42.

    Article  CAS  PubMed  Google Scholar 

  8. Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev. 2016;8:5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pelis RM, Wright SH. SLC22, SLC44, and SLC47 transporters–organic anion and cation transporters: molecular and cellular properties. Curr Top Membr. 2014;73:233–61.

    Article  CAS  PubMed  Google Scholar 

  10. Markowicz-Piasecka M, Huttunen KM, Mateusiak L, Mikiciuk-Olasik E, Sikora J. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des. 2017;23:2532–50.

    Article  CAS  PubMed  Google Scholar 

  11. Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci. 2018;43:752–89.

    Article  CAS  PubMed  Google Scholar 

  12. Koller WC, Rueda MG. Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology. 1998;50:S11–4.

    Article  CAS  PubMed  Google Scholar 

  13. Camargo SM, Vuille-dit-Bille RN, Mariotta L, Ramadan T, Huggel K, Singer D, et al. The molecular mechanism of intestinal levodopa absorption and its possible implications for the treatment of Parkinson's disease. J Pharmacol Exp Ther. 2014;351:114–23.

    Article  PubMed  CAS  Google Scholar 

  14. Hawkins RA, Mokashi A, Simpson IA. An active transport system in the blood-brain barrier may reduce levodopa availability. Exp Neurol. 2005;195(1):267–71.

    Article  CAS  PubMed  Google Scholar 

  15. Frankel JP, Kempster PA, Bovingdon M, Webster R, Lees AJ, Stern GM. The effects of oral protein on the absorption of intraduodenal levodopa and motor performance. J Neurol Neurosurg Psychiatry. 1989;52:1063–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lennernäs H, Nilsson D, Aquilonius SM, Ahrenstedt O, Knutson L, Paalzow LK. The effect of L-leucine on the absorption of levodopa, studied by regional jejunal perfusion in man. Br J Clin Pharmacol. 1993;35:243–50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guebila MB, Thiele I. Model-based dietary optimization for late-stage, levodopa-treated, Parkinson's disease patients. NPJ Syst Biol Appl. 2016;2:16013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Barichella M, Cereda E, Cassani E, Pinelli G, Iorio L, Ferri V, et al. Dietary habits and neurological features of Parkinson's disease patients: implications for practice. Clin Nutr. 2017;36:1054–61.

    Article  PubMed  Google Scholar 

  19. Wang L, Xiong N, Huang J, Guo S, Liu L, Han C, et al. Protein-restricted diets for ameliorating motor fluctuations in Parkinson's disease. Front Aging Neurosci. 2017;9:206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vig BS, Huttunen KM, Laine K, Rautio J. Amino acids as promoieties in prodrug design and development. Adv Drug Deliv Rev. 2013;65:1370–85.

    Article  CAS  PubMed  Google Scholar 

  21. Minhas GS, Newstead S. Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters. Biochem Soc Trans. 2020;48:337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balimane PV, Tamai I, Guo A, Nakanishi T, Kitada H, Leibach FH, et al. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem Biophys Res Commun. 1998;250:246–51.

    Article  CAS  PubMed  Google Scholar 

  23. Hatanaka T, Haramura M, Fei YJ, Miyauchi S, Bridges CC, Ganapathy PS, et al. Transport of amino acid-based prodrugs by the Na+− and Cl(−) -coupled amino acid transporter ATB(0,+) and expression of the transporter in tissues amenable for drug delivery. J Pharmacol Exp Ther. 2004;308:1138–47.

    Article  CAS  PubMed  Google Scholar 

  24. Gynther M, Ropponen J, Laine K, Leppänen J, Haapakoski P, Peura L, et al. Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats. J Med Chem. 2009;52:3348–53.

    Article  CAS  PubMed  Google Scholar 

  25. Markowicz-Piasecka M, Huttunen KM, Mateusiak L, Mikiciuk-Olasik E, Sikora J. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des. 2017;23:2532–50.

    Article  CAS  PubMed  Google Scholar 

  26. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of Organic Cation Transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. 2015;64:1786–93.

    Article  CAS  PubMed  Google Scholar 

  28. Mofo Mato EP, Guewo-Fokeng M, Essop MF, Owira PMO. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: a systematic review. Medicine (Baltimore). 2018;97:e11349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Talevi, A., Bellera, C.L. (2022). Active and Facilitated Transport in Drug Absorption. In: Talevi, A. (eds) The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_46

Download citation

Publish with us

Policies and ethics