Skip to main content

Active Targeting of Nanocarriers

  • Reference work entry
  • First Online:
The ADME Encyclopedia

Definition

The active targeting of nanocarriers consists in conjugating affinity ligands to their surface to achieve an increased retention at the target site and/or to enhance their uptake by the target cells. This concept has been receiving increased attention in the nanotechnology field, showing promising potential to provide efficient targeting outcomes, as ligands are strategically selected to recognize and bind to overexpressed or highly specific molecules on tissues and cells. Active targeting was developed as a complementary strategy to passive targeting, and it is particularly useful when the conditions for passive targeting are not favorable (e.g., when the enhanced permeability and retention (EPR) effect is low or absent) (see “Passive Targeting and the Enhanced Permeability and Retention (EPR) Effect”). In the present chapter, the most common strategies for active targeting using nanocarriers are discussed, with focus both on the different types of ligands utilized and on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–57.

    Article  CAS  PubMed  Google Scholar 

  2. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer Nature Publishing Group. 2002;2:750–63.

    Article  CAS  Google Scholar 

  3. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1–12.

    Article  CAS  Google Scholar 

  4. Cardoso MM, Peça IN, Roque ACA. Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem. 2012;19:3103–27.

    Article  CAS  PubMed  Google Scholar 

  5. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  6. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov Nature Publishing Group. 2003;2:347–60.

    Article  CAS  Google Scholar 

  7. Mohanraj VJ, Chen Y. Nanoparticles – a review. Trop J Pharm Res. 2006;5:561–73.

    Google Scholar 

  8. Nobs L, Buchegger F, Gurny R, Allémann E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem American Chemical Society. 2006;17:139–45.

    Article  CAS  Google Scholar 

  9. Sun B, Ranganathan B, Feng S-S. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008;29:475–86.

    Article  PubMed  CAS  Google Scholar 

  10. Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Nielsen UB, et al. Tumor targeting using anti-her2 immunoliposomes. J Control Release. 2001;74:95–113.

    Article  CAS  PubMed  Google Scholar 

  11. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release. 2004;100:135–44.

    Article  CAS  PubMed  Google Scholar 

  12. Schuster L, Seifert O, Vollmer S, Kontermann RE, Schlosshauer B, Hartmann H. Immunoliposomes for targeted delivery of an antifibrotic drug. Mol Pharm. 2015;12:3146–57.

    Article  CAS  PubMed  Google Scholar 

  13. Falco A, Barrajón-Catalán E, Menéndez-Gutiérrez MP, Coll J, Micol V, Estepa A. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antivir Res. 2013;97:218–21.

    Article  CAS  PubMed  Google Scholar 

  14. Robinson AM, Creeth JE, Jones MN. The use of immunoliposomes for specific delivery of antimicrobial agents to oral bacteria immobilized on polystyrene. J Biomater Sci Polym Ed. 2000;11:1381–93.

    Article  CAS  PubMed  Google Scholar 

  15. Cho H, Stuart JM, Magid R, Danila DC, Hunsaker T, Pinkhassik E, et al. Theranostic immunoliposomes for osteoarthritis. Nanomed Nanotechnol Biol Med. 2014;10:619–27.

    Article  CAS  Google Scholar 

  16. Kuo TT, Aveson VG. Neonatal Fc receptor and IgG-based therapeutics. mAbs. 2011;3:422–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci Transl Med American Association for the Advancement of Science. 2013;5:213ra167-213ra167.

    Google Scholar 

  18. Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8:916–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.

    Article  CAS  PubMed  Google Scholar 

  20. Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer. 2002;99:130–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C, et al. Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release. 2010;141:22–9.

    Article  CAS  PubMed  Google Scholar 

  22. Omori N, Maruyama K, Jin G, Wang SJ, Hamakawa Y, Sato K, et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res Taylor & Francis. 2003;25:275–9.

    Article  CAS  Google Scholar 

  23. Xu L, Huang C-C, Huang W, Tang W-H, Rait A, Yin YZ, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther. 2002;1:337–46.

    CAS  PubMed  Google Scholar 

  24. Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2009;71:251–6.

    Article  CAS  Google Scholar 

  25. Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, et al. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine. 2012;7:1043–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Foit L, Giles FJ, Gordon LI, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther. 2015;15:27–34.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Gaytan BL, Fay F, Lobatto ME, Tang J, Ouimet M, Kim Y, et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem American Chemical Society. 2015;26:443–51.

    Article  CAS  Google Scholar 

  28. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997;15:542–6.

    Article  CAS  PubMed  Google Scholar 

  29. Han HD, Mangala LS, Lee JW, Shahzad MMK, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16:3910–22.

    Article  CAS  Google Scholar 

  30. Antonow MB, Franco C, Prado W, Beckenkamp A, Silveira GP, Buffon A, et al. Arginylglycylaspartic acid-surface-functionalized doxorubicin-loaded lipid-core nanocapsules as a strategy to target alpha(V) beta(3) integrin expressed on tumor cells. Nanomater Basel Switz 2017;8.

    Google Scholar 

  31. Song Z, Lin Y, Zhang X, Feng C, Lu Y, Gao Y, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 2017;12:1941–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang F, Chen L, Zhang R, Chen Z, Zhu L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–33.

    Article  CAS  PubMed  Google Scholar 

  33. Lestini BJ, Sagnella SM, Xu Z, Shive MS, Richter NJ, Jayaseharan J, et al. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control Release. 2002;78:235–47.

    Article  CAS  PubMed  Google Scholar 

  34. Kardani K, Milani A, Shabani SH, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv. 2019;16:1227–58.

    Article  CAS  PubMed  Google Scholar 

  35. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60:548–58.

    Article  CAS  PubMed  Google Scholar 

  36. Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A. 2001;98:8786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hyndman L, Lemoine JL, Huang L, Porteous DJ, Boyd AC, Nan X. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J Control Release. 2004;99:435–44.

    Article  CAS  PubMed  Google Scholar 

  38. Shao K, Huang R, Li J, Han L, Ye L, Lou J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release. 2010;147:118–26.

    Article  CAS  PubMed  Google Scholar 

  39. Salazar MD, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26:141–52.

    Article  CAS  PubMed  Google Scholar 

  40. Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther American Association for Cancer Research. 2006;5:818–24.

    Article  CAS  Google Scholar 

  41. Reddy JA, Abburi C, Hofland H, Howard SJ, Vlahov I, Wils P, et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther. 2002;9:1542–50.

    Article  CAS  PubMed  Google Scholar 

  42. Yang S-J, Lin F-H, Tsai H-M, Lin C-F, Chin H-C, Wong J-M, et al. Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials. 2011;32:2174–82.

    Article  CAS  PubMed  Google Scholar 

  43. de Oliveira CP, Büttenbender SL, Prado WA, Beckenkamp A, Asbahr AC, Buffon A, et al. Enhanced and selective Antiproliferative activity of methotrexate-functionalized-nanocapsules to human breast cancer cells (MCF-7). Nanomater Basel Switz. 2018;8.

    Google Scholar 

  44. Patching SG. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54:1046–77.

    Article  CAS  PubMed  Google Scholar 

  45. Qin Y, Fan W, Chen H, Yao N, Tang W, Tang J, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes. J Drug Target Taylor & Francis. 2010;18:536–49.

    Article  CAS  Google Scholar 

  46. Park J-H, Cho H-J, Kim D-D. Poly((D,L)lactic-glycolic)acid–star glucose nanoparticles for glucose transporter and hypoglycemia-mediated tumor targeting. Int J Nanomedicine. 2017;12:7453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho CS, Kobayashi A, Takei R, Ishihara T, Maruyama A, Akaike T. Receptor-mediated cell modulator delivery to hepatocyte using nanoparticles coated with carbohydrate-carrying polymers. Biomaterials. 2001;22:45–51.

    Article  CAS  PubMed  Google Scholar 

  48. Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv. 2008;5:703–24.

    Article  CAS  PubMed  Google Scholar 

  49. Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19:6315–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, et al. Molecular aptamers for drug delivery. Trends Biotechnol. 2011;29:634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103:6315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willis MC, Collins BD, Zhang T, Green LS, Sebesta DP, Bell C, et al. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem. 1998;9:573–82.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181:151–67.

    Article  CAS  PubMed  Google Scholar 

  54. Brenner JS, Pan DC, Myerson JW, Marcos-Contreras OA, Villa CH, Patel P, et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun Nature Publishing Group. 2018;9:1–14.

    CAS  Google Scholar 

  55. Zhao Z, Ukidve A, Gao Y, Kim J, Mitragotri S. Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci Adv American Association for the Advancement of Science. 2019;5:eaax9250.

    CAS  Google Scholar 

  56. Hou J, Yang X, Li S, Cheng Z, Wang Y, Zhao J, et al. Accessing neuroinflammation sites: monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci Adv American Association for the Advancement of Science. 2019;5:eaau8301.

    CAS  Google Scholar 

  57. Roger M, Clavreul A, Venier-Julienne M-C, Passirani C, Sindji L, Schiller P, et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials. 2010;31:8393–401.

    Article  CAS  PubMed  Google Scholar 

  58. Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med. 2015;7:291ra94.

    PubMed  PubMed Central  Google Scholar 

  59. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev American Chemical Society. 2013;113:1904–2074.

    Article  CAS  Google Scholar 

  60. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article  CAS  PubMed  Google Scholar 

  61. Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci. 2004;93:1980–92.

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Ma F-K, Dang Q-F, Liang X-G, Chen X-G. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells. Front Mater Sci. 2014;8:363–72.

    Article  Google Scholar 

  63. Loughrey H, Bally MB, Cullis PR. A non-covalent method of attaching antibodies to liposomes. Biochim Biophys Acta BBA – Biomembr. 1987;901:157–60.

    Article  CAS  Google Scholar 

  64. Cavalcante MF, Kazuma SM, Bender EA, Adorne MD, Ullian M, Veras MM, et al. A nanoformulation containing a scFv reactive to electronegative LDL inhibits atherosclerosis in LDL receptor knockout mice. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2016;107:120–9.

    Article  CAS  Google Scholar 

  65. de Cristo Soares Alves A, Lavayen V, Figueiró F, Dallemole DR, de Fraga Dias A, Cé R, et al. Chitosan-coated lipid-core nanocapsules functionalized with Gold-III and bevacizumab induced in vitro cytotoxicity against C6 cell line and in vivo potent antiangiogenic activity. Pharm Res. 2020;37:91.

    Article  PubMed  CAS  Google Scholar 

  66. Herda LM, Hristov DR, Lo Giudice MC, Polo E, Dawson KA. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J Am Chem Soc American Chemical Society. 2017;139:111–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza Abrahão Frank .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Onzi, G., Guterres, S.S., Pohlmann, A.R., Frank, L.A. (2022). Active Targeting of Nanocarriers. In: Talevi, A. (eds) The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_109

Download citation

Publish with us

Policies and ethics