Abstract
Chitin is a most abundant fibrous matter comprised of polysaccharide carbohydrates. Chitin is a dominant and main building material in the exoskeleton of many living organisms, including arthropods, crustaceans, fungi, and fishes. Chitin strengthens the exoskeleton, and enzymatic and chemical deacetylation by removing an acetyl group is converted into linear polysaccharide chitosan. In nature, chitosan is a carbohydrate acquired from the degradation of the hard skeleton of shellfish, arthropods, and crustaceans. Crustaceans and shellfishes contribute a significant proportion to total chitin used in the food-processing industry, besides having considerable applications in the biomedical field. The organisms that synthesize chitin employed a rigorous and complex enzymatic mechanism for degradation and body homeostasis. The enzyme uridine diphosphate-N-acetylglucosamine (UDPGlcNAc) is important for chitin synthesis; it brings out small chitin polymers, while a hydrolytic chitinase enzyme breaks down the chitin. In nature, the major biotic factor that degrades breaks down and mediates chitin hydrolysis is bacteria. Chitin and chitosan have multiple properties and features, including translucence, pliability, resilience, toughness, biodegradability, biocompatibility, innocuous film formation, revolutionizing the biomedical field. The emerging application of nanotechnology has utilized chitin and chitosan-originated materials to achieve innovations to transform the biomedical field. The multiple chitins and chitosan applications have contributed a major role in the polymer industry, especially in fabricating polymer scaffolds.
Biomedical sciences face many challenges, and the major role chitin and chitosan played in terms of their nano-/microparticles and encapsulation of cargos are interesting. The uniquely designed nanocarriers and microencapsulation techniques are very interesting based on chitin-based materials for effectiveness in delivering drugs, biologics, and vaccines. The encapsulated drugs and nanoparticles are specific to applications, dimension, and cargo-release properties. Chitosan has been used effectively and efficiently in hydrogel solutions, nano-/microparticles, drug and vaccine delivery, antibacterial, wound healing, anticancer, cancer diagnosis, chitin- and chitosan-based dressings, ophthalmology, antibacterial properties, antithrombogenic and hemostatic materials, antiaging cosmetics, antitumor activity, and vaccine adjuvant as customized biochemical properties; therefore it is one of the most critical, essential, and well-researched biomaterials. This book chapter is aimed to thoroughly discuss the biosynthesis, isolation, and applications of chitin and chitosan under various headings.
Similar content being viewed by others
Abbreviations
- (GlcNac)2:
-
(N-acetylglucosamine)2
- ADP:
-
Adenosine diphosphate
- B cell:
-
B cells
- BPN:
-
Block-copolymer nanoparticles
- BTTG:
-
British Textile Technology Group
- CD4+Th2 cell:
-
Th2 subset of CD4+ T cells synthesizing cytokines
- CDS−T cell:
-
The cluster of differentiation in T cell
- CMCS:
-
Cell-mediated cytotoxicity
- CO2:
-
Carbon dioxide
- COS:
-
Chitosan oligosaccharide
- CS:
-
Chitin synthase
- CS:
-
Cytokine storm
- CSN:
-
Chitosan glutamate
- CTL:
-
Cytotoxic T lymphocytes
- DC:
-
Dendritic cells
- DD:
-
Degree of deacetylation
- DNA:
-
Deoxyribonucleic acid
- FA:
-
Fatty acid
- GH:
-
Glycosyl hydrolases
- GH-18:
-
Glycoside hydrolase family 18
- GH-19:
-
Glycoside hydrolase family 19
- GlcN:
-
d-glucosamine, a 2-amino-2-deoxy-d-glucopyranose
- GlcNAc:
-
N-acetylglucosamine
- GlNac:
-
N-acetylgalactosamine
- GPIa-Iia:
-
Integrin alpha(2)beta(1)-very late antigen 2
- GPIb-IX-V:
-
GPIb-IX-V complex
- GPIIa-IIIb:
-
Glycoprotein IIb/IIIa integrin αIIbβ3
- GPIIb-IIIa:
-
Immune-mediated thrombocytopenia
- GPVI:
-
Immunoglobulin receptor-very late glycoprotein antigen (VI)
- HCPT:
-
10-hydroxycamptothecin
- HCPT:
-
Hyperosmolar conjunctival provocation test
- HPLC:
-
High-pressure liquid chromatography
- IFNs:
-
Type I interferons
- IgA:
-
Immunoglobulin A
- IgG:
-
Immunoglobulin G
- IgN:
-
Immunoglobulin N
- IL-13:
-
Interleukin-13
- IL-4:
-
Interleukin-14
- IL-6:
-
Interleukin 6 function as pro-inflammatory cytokine and an anti-inflammatory myokine
- IR:
-
Infrared
- LMPOs:
-
Lytic polysaccharide monooxygenases
- LPL:
-
Lipoprotein lipase
- M cells:
-
Mucosa-associated lymphoid cells
- MAPK:
-
Mitogen-activated protein kinases
- M-cell:
-
Microfold cells
- MHC-I and MHC-II:
-
Major histocompatibility complex (MHC) class I and class II proteins
- MR:
-
Magnetic resonance
- NCBI:
-
National Center for Biotechnology Information
- NF-kB:
-
Nuclear factor-κB (NF-κB)
- NIBRG-14:
-
National Institute of Biomedical Genomics-14
- NK:
-
Natural killer
- NMR:
-
Nuclear magnetic resonance
- PCL:
-
Poly-ɛ-caprolactone
- PDGF:
-
Platelet-derived growth factor
- PELCL (PDGF):
-
Collagen/poly(l-lactic acid-co-ε-caprolactone)
- pH:
-
Power of H+ ion concentration which measures acidic/basic response of medium
- PHHYCN:
-
Phosphatidylcholine hyaluronic acid chitin
- PLC:
-
Phospholipase C, an assembly of enzymes lading to hydrolysis of phosphatidylinositol 4,5-bisphosphate
- PLGA (VEGF):
-
Poly(lactic-co-glycolic acid
- QD:
-
Quantum dot
- RNA:
-
Ribonucleic acid
- SARS-COV-2:
-
Severe acute respiratory syndrome coronavirus 2
- STING-cGAS:
-
Stimulator of interferon genes-cytosolic cyclic GMP–AMP synthase
- Syk:
-
Spleen tyrosine kinase
- T cell:
-
Cells originated from thymus
- TMC:
-
N, N, N-trimethylated chitosan
- TNF-α:
-
Tumor necrosis factor α
- TNF-γ :
-
Tumor necrosis factor γ
- TXA2:
-
Thromboxane A2/prostaglandin H2
- UDPGlcNAc:
-
Uridine diphosphate-N-acetylglucosamine glycosyltransferases
- UDP-N:
-
Uridine diphosphate N-acetylglucosamine
- UV:
-
Ultraviolet
- VEC:
-
Vascular endothelial cells
- VEGF:
-
Vascular endothelial growth factor
- VSMC:
-
Vascular smooth muscle cells
- VWF:
-
von Willebrand factor
- ZnS:
-
Doped-zinc sulfide
References
Ahmed M, Rozina K, Naveera N, and Fazli W (2021) Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod: 6 (1):11–25, https://doi.org/10.1016/j.jobab.2021.01.002
Ahmed SB, Mohamed HI, and Al-Subaie AM (2021) Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci. Rep: 11, 9540. https://doi.org/10.1038/s41598-021-88907-z
Ahuja V, Bhatt A K, and Sharma V (2021) Advances in glucosamine production from waste biomass and microbial fermentation technology and its applications. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-021-01968-y
Al-Jbour ND, Beg MDH, Gimbun J, and Alam AKMM (2021) Preparation and characterization of low molecular weight chitosan with different degrees of deacetylation by the acid hydrolysis method. Int. J. Appl. Pharm: 13(2), 153–164, https://doi.org/10.22159/ijap.2021v13i2.32229
Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA (2021). Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics: 13: 961, https://doi.org/10.3390/pharmaceutics13070961
Alvites RD, Branquinho MV, Sousa AC (2021) Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int: 6613029, https://doi.org/10.1155/2021/6613029
American Cancer Society (2021) Treating Breast Cancer. cancer.org.1.800.227.2345. www.cancer.org/aboutus/policies/content-usage.html, 1–105
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z and Chamieh H (2021) Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules: 11:1557. https://doi.org/10.3390/biom11111557
Andrea Y, Mansilla AC, Ramiro P, Julieta RM, Carlos DL, Viviana MR, Claudia AC and Enrique MC (2021) Wheat germin-like protein: Studies on chitin/chitosan matrix for tissue engineering applications. J. Biosci. Bioeng: 131: 5, 549–556, ISSN 1389-1723, https://doi.org/10.1016/j.jbiosc.2021.01.001.
Angst G, Pokorný J, Mueller CW, Prater I, Preusser S, Kandeler E, Meador T, Straková P, Hájek T, van Buiten G, and Angst S (2021) Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem: 159. 108302, https://doi.org/10.1016/j.soilbio.2021.108302
Roy AG, Robinson JM, Sharma P, Rodriguez-Garcia A, Poussin MA, Nickerson-Nutter C and Powell DJJ (2021) Folate Receptor Beta as a Direct and Indirect Target for Antibody-Based Cancer Immunotherapy. Int. J. Mol. Sci. 22(11):5572, https://doi.org/10.3390/ijms22115572. PMID: 34070369; PMCID: PMC8197521.
Das SS, Kar S, Singh SK, Hussain A, Verma PRP and Beg S (2022) Chapter 13- Carboxymethyl chitosan in advanced drug-delivery applications, Editor(s): Md Saquib Hasnain, Sarwar Beg, Amit Kumar Nayak. Chitosan in Drug Delivery, Acad. Press. 323–360, ISBN 9780128193365, https://doi.org/10.1016/B978-0-12-819336-5.00006-6.
Truszkiewicz A, Aebisher D and Bartusik-Aebisher D (2022) MCF-7, ACHN, and A549 Cancer Cells Characterized by Quantitative Magnetic Resonance Imaging. In Vitro 12, 4.5174–5186 https://doi.org/10.33263/BRIAC124.51745186
Liu, Y.; Sun, M.; Wang, T.; Chen, X.; Wang, H. Chitosan-based self-assembled nanomaterials: Their application in drug delivery. Wiley Online Library 2021b, 2, 20200069
Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M and Fontana CR (2019). Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: A Review. AAPS Pharm Sci Tech:20, 253
Omer AM, Sadik WA, Demerdash AGME and Hassan HS (2021). Formulation of pH-sensitive aminated chitosan-gelatin crosslinked hydrogel for oral drug delivery. J. Saudi Chem. Soc. 25 (12): 101384.https://doi.org/10.1016/j.jscs.2021.101384.
Sánchez-Cardona Y, Echeverri-Cuartas CE, López MEL and Moreno-Castellanos N (2021) Chitosan/Gelatin/PVA Scaffolds for Beta Pancreatic Cell Culture. Polym, 13:2372. https://doi.org/10.3390/polym13142372
Narmani A and Jafari SM (2021) Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohy. Polym. 272:118464. https://doi.org/10.1016/j.carbpol.2021.118464. Epub, PMID: 34420724.
Hoda RA, El-Zehery ZRA, Abdel-Rahman HM, Salem AA and El-Dougdoug KA (2021). Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes, Saudi J. Biol. Sci ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2021.12.036.
Barzic AI and Albu RM (2021) Optical properties and biointerface interactions of chitin. Polym. Bull. 7 (8): 6535–6548. https://doi.org/10.1007/s00289-020-03406-x
Berrada M (2021) Chitin and chitosan. Physicochemical Properties and Industrial Applications. https://doi.org/10.5772/intechopen.91553. ISBN: 978-1-78984-425-2. Print ISBN: 978-1-78984-424-5. eBook, ISBN: 978-1-83968-695-5.IntechOpenLtd. United Kingdom, London.
Bian T and Klajn R (2021) Morphology control in crystalline nano-particle-polymer aggregates. Ann. N. Y. Acad. Sci. Annual Reports: Special Issue. 1505:1. 191–20. https://doi.org/10.1111/nyas.14674
Blackman LD, Qu Y, Cass P, and Locock KES (2021) Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem. Soc. Rev: 50, 1587–1616, https://doi.org/10.1039/D0CS00986E
Bochicchio S, Lamberti G, and Barba AA (2021) Polymer-Lipid Pharmaceutical Nano-carriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 13, 198. https://doi.org/10.3390/pharmaceutics13020198
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi KM, Badehnoosh B, Ghandali M, Hamblin MR. and Mirzaei H (2021) Chitosan-Based Nanoparticles Against Viral Infections. Front. Cell. Infect. Microbiol. 11: 175, https://doi.org/10.3389/fcimb.2021.643953
Bram VDE, Jan T, and Sarah G (2021) Interleukin-1 as Innate Mediator of T Cell Immunity. Front. Immunol: 11. 3605. https://doi.org/10.3389/fimmu.2020.621931
Briukhovetska D, Dörr J, and Endres S (2021) Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer: 21: 481–499. https://doi.org/10.1038/s41568-021-00363-z
Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M and Fontana CR (2019). Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: A Review. AAPS Pharm Sci Tech:20, 253
Campora S and Ghersi G (2021) Smart Nanoparticles in Biomedicine, An Overview of Recent Developments and Applications, 2021020619, https://doi.org/10.20944/preprints202102.0619.v1
Candy DJ and Kilby BA (1962) Studies on Chitin Synthesis in the Desert Locust. J. Exp. Biol. 39, 129
Caprifico AE, Polycarpou E, Foot PJS and Calabrese G (2020) Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol. Biosc. 21:1, https://doi.org/10.1002/mabi.202000312
Capuana E, Lopresti F, Pavia FC, and Carrubba VL (2021) Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review. Poly. 13 (13) https://doi.org/10.3390/polym13132041
Ta Q, Ting J, Harwood S and Al-Kassas R (2021) Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. European journal of pharmaceutical Sciences. Eur J Pharm Sci. 160(8):105765, https://doi.org/10.1016/j.ejps.2021.105765
Celis D, Azocar MI, Enrione J, Paez M and Matiacevich M (2011) Characterization of salmon gelatin based film on antimicrobial properties of chitosan against E. coli, Procedia Food Sci: 1: 399–403, https://doi.org/10.1016/j.profoo.2011.09.061.
Cheng YH, Chang YF, Ko YC and Liu CJ (2021) Development of a dual delivery of levofloxacin and prednisolone acetate via PLGA nanoparticles/thermosensitive chitosan-based hydrogel for postoperative management: An in-vitro and ex-vivo study. Int. J. Biol. Macromol. 180:365–374. https://doi.org/10.1016/j.ijbiomac.2021.03.017
Wang X, Isbrandt T, Strube ML (2021c) Chitin Degradation Machinery and Secondary Metabolite Profiles in the Marine Bacterium Pseudoalteromonas rubra S4059. Mar. Drugs 19(2):108. https://doi.org/10.3390/md19020108
Zhou L, Cai L, Ruan H, Zhang L, Wang J, Jiang H, Wu Y, Feng S and Chen J (2021) Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int. J. Biol. Macromol. 183:1145–1154. https://doi.org/10.1016/j.ijbiomac.2021.05.031.
Cohen E and Casida JE (1983) Insect chitin synthetase as a biochemical probe for insecticidal compounds. Mode of Action, Metabolism and Toxicology Pergamon. Pergamon, Oxford 3: 25–32. https://doi.org/10.1016/B978-0-08-029224-3.50008-3.
Confederat LG, Tuchilus CG, Dragan M, Sha’at M and Dragostin OM (2021) Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Mole. 26(12): 3694. https://doi.org/10.3390/molecules26123694
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi KM, Badehnoosh B, Ghandali M, Hamblin MR. and Mirzaei H (2021) Chitosan-Based Nanoparticles Against Viral Infections. Front. Cell. Infect. Microbiol. 11: 175, https://doi.org/10.3389/fcimb.2021.643953
Curto MÁ, Butassi E, Ribas JC, Svetaz LA and Cortés JCG (2021) Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomed. 88:153556. https://doi.org/10.1016/j.phymed.2021.153556.
Dai L, Li H and Zheng J (2022) Transcriptome analyses of the Chinese white pine beetle-fungal symbiont Leptographium qinlingensis under terpene stress or growth on host pine sawdust. Symbiosis. https://doi.org/10.1007/s13199-021-00822-z
Das SS, Kar S, Singh SK, Hussain A, Verma PRP and Beg S (2022) Chapter 13- Carboxymethyl chitosan in advanced drug-delivery applications, Editor(s): Md Saquib Hasnain, Sarwar Beg, Amit Kumar Nayak. Chitosan in Drug Delivery, Acad. Press. 323–360, ISBN 9780128193365, https://doi.org/10.1016/B978-0-12-819336-5.00006-6.
Daulagala PWHKP (2021) Chitinolytic Endophytic Bacteria as Biocontrol Agents for Phytopathogenic Fungi and Nematode Pests: A Review. Asian J Res. Bot. 5(3): 14–24 Asian Journal of Research in Biology. 65272.
Dave U, Somanader E, Baharlouei P, Pham L and Rahman MA (2021) Applications of Chitin in Medical, Environmental, and Agricultural Industries. J. Mar. Sci. Eng. 9, 1173. https://doi.org/10.3390/jmse9111173
Deminaa TS, Akopovaa TA and Zelenetskya AN (2021). Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. ISSN 1811-2382. Polym. Sci. Ser. C. 63: 2: 219–226
Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh TH and Nathanael AJ (2021) Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Poly (Basel) 13(21):3782, https://doi.org/10.3390/polym13213782
Singh B, Maharjan S, Cho KH, Cui L, Park IK, Choi YJ, Cho CS (2018) Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int. J. Biol. Macromol. 110: 54–64
Rajoka MSR, Mehwish HM, Wu Y, Zhao L, Arfat Y, Majeed K and Anwaar S (2020) Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives, Crit. Rev. Biotechnol. 40:3, 365–379, https://doi.org/10.1080/07388551.2020.1713719
Kong SZ, Li JC and Li SD (2018) Anti-Aging Effect of Chitosan Oligosaccharide on d-Galactose-Induced Subacute Aging in Mice. Mar. Drugs 16(6):181. https://doi.org/10.3390/md16060181
Morganti P, Palombo M, Tishchenko G, Yudin VE, Guarneri F, Cardillo M, Del Ciotto P, Carezzi F, Morganti G, Fabrizi G (2014) Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin. Cosmetics. 1:140–158. https://doi.org/10.3390/cosmetics1030140
Guo H, Li F, Qiu H, Liu J, Qin S, Hou Y and Wang C (2020) Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front. Pharmacol. 11:317, https://doi.org/10.3389/fphar.2020.00317
Eivazzadeh KR, Radinekiyan F, Aliabadi HAM (2021) Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep 11, 650. https://doi.org/10.1038/s41598-020-80133-3
Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, Sukhtezari S, Tahmasebi B, Maleki A, Madanchi H (2020). Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep. 12:11(1):650, https://doi.org/10.1038/s41598-020-80133-3.
Elena JO, Peter EK, María FL and Julia SA (2021) Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Comput. Struct. Biotechnol. J. 19. 5466-5478, ISSN 2001-0370, https://doi.org/10.1016/j.csbj.2021.09.027.
Europeanchitin Society Newsletter (2021) Chitin Science World: “Braconnot’s discovery is a world treasure. 2021. Malgorzata M. Jaworska, Faculty of Chemical and Process Eng., Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warsaw (POLAND). Proceedings of the 10-th International Conference of the European Chitin Society, Saint-Petersburg, Russia. Annales de Chimie, Tome LXXIX, pp. 265–304
Faqir Y, Ma J and Chai Y (2021) Chitosan in modern agriculture production. Plant. Soil. Environ. 67: (12): 679–699. https://doi.org/10.17221/332/2021-PSE
Fatima B (2020) Quantitative Analysis by IR: Determination of Chitin/Chitosan DD, Modern Spectroscopic Techniques and Applications, Maaz Khan, Gustavo Morari do Nascimento and Marwa El-Azazy, IntechOpen, https://doi.org/10.5772/intechopen.89708. https://www.intechopen.com/chapters/69656
Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L and Wu S (2021) Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. bioeng. biotechnol. 9: 111, https://doi.org/10.3389/fbioe.2021.650598
Fernando LD, Dickwella WMC, Penfield J, Lipton AS, Washton N, Latgé J, Wang P, Zhang L and Wang T (2021) Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front. Mol. Biosci. 8: 814, https://doi.org/10.3389/fmolb.2021.727053
Ganesan S, Baskaran B and Raj M (2021) Vibriosis Incidents in Marine Finfish Farms: Prevalence, Diagnosis of Pathogens using 16S rRNA, Histopathology, and In Vitro Antibacterial Evaluation Against Isolated Vibrio spp using Antibiotics and Probiotics. Thalassas. https://doi.org/10.1007/s41208-021-00368-3
Ghimire S, Sarkar P, Rigby K, Maan A, Mukherjee S, Crawford KE and Mukhopadhyay K (2021) Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics. 13, 2127, https://doi.org/10.3390/pharmaceutics13122127
Giacomo M, Marco V, Andrea F, Kevin C and Paola C (2021) Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications, https://doi.org/10.1039/d1nh00260k. nanoscale horiz. 6: 676–695
Gilbert S and Herman E (2021) Exponential Growth and Decay. Rice University 6100 Main Street MS-375Houston, TX 77005
Giorgia Z, Siyuan D, Joost H, Natasa G, Uwe H, Roberta C, Clemens L, Piera DM and Laura M (2021) Fluorinated PLGA-PEG-Mannose Nanoparticles for Tumor-Associated Macrophage Detection by Optical Imaging and MRI. Front. Med. 8: 1374, https://doi.org/10.3389/fmed.2021.712367
Gonçalves RC, Signini R, Rosa LM, Dias YSP, Vinaud MC, Junior RSL (2021) Carboxymethyl chitosan hydrogel formulations enhance the healing process in experimental partial-thickness (second-degree) burn wound healing. Acta Cir. Bras. 36: (3) https://doi.org/10.1590/ACB360303
Gul A, Gallus I, Tegginamath A, Maryska J and Yalcinkaya F (2021) Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. Memb. 11, 908. https://doi.org/10.3390/membranes11120908
Guo H, Li F, Qiu H, Liu J, Qin S, Hou Y and Wang C (2020) Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front. Pharmacol. 11:317, https://doi.org/10.3389/fphar.2020.00317
Gushiken LFS, Beserra FP, Bastos JK., Jackson CJ, Pellizzon CH (2021) Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life 11: 665. https://doi.org/10.3390/life11070665
Raimundo I, Silva R and Meunier L (2021) Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Microbiome 9: 43. https://doi.org/10.1186/s40168-020-00970-2
Hahn T, Tafi E, Paul A, Salva R, Falabella P and Zibek S (2020) Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biote. 95 (11): 2775–2795. https://doi.org/10.1002/jctb.6533
Han F, Jia X, Dai D, Yang X, Zhao J, Zhao Y, Fan Y, Yuan X (2013) Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF, Biomate. 34 7302–7313, https://doi.org/10.1016/j.biomaterials.2013.06.006
Haque ST, Saha SK, Haque ME and Biswas N (2021) Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater. Sci. 23, https://doi.org/10.1039/D1BM01211H
Hasibuan Z, Yuandani PA, Tanjung M (2021) Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Heliyon 7(10):e08197, https://doi.org/10.1016/j.heliyon.2021.e08197
He W, Huang X, Zhang J, Zhu Y, Liu Y, Liu B, Wang Q, Huang X and He D (2021) CaCO3-Chitosan Composites Granules for Instant Hemostasis and Wound Healing. Materials 14: 3350. https://doi.org/10.3390/ma14123350
Heras A., Rodríguez N.M., Ramos V.M., Agulló E (2001). N-methylene phosphonic chitosan: A novel soluble derivative. Carbohydr. Polym. 2001;44:1–8. https://doi.org/10.1016/S0144-8617(00)00195-8.
Hoda RA, El-Zehery ZRA, Abdel-Rahman HM, Salem AA and El-Dougdoug KA (2021). Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes, Saudi J. Biol. Sci ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2021.12.036.
Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM and Eijsink VG (2006). Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J.273(3):491–503. https://doi.org/10.1111/j.1742-4658.2005.05079.x.
Hou J, Aydemir BE and Dumanli AG (2021) Understanding the structural diversity of chitinsas a versatile biomaterial. Philos. Trans. Royal Soc, 379: 20200331. https://doi.org/10.1098/rsta.2020.0331
Hugo MG, Adriana FS and Erik JVM (2021) Sustainable chitosan production by mucoralean fungi using waste post-frying oils and corn steep liquor as substrates Int. J. Dev. Res, 11: (01), 43185–43194
Ibe C and Munro CA (2021) Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathog. 17(4): e1009470. https://doi.org/10.1371/journal.ppat.1009470
Ibrahim HM and El-Zairy EMR (2015) Chitosan as a Biomaterial-Structure, Properties, and Electrospun Nanofibers, Concepts, Compounds and the Alternatives of Antibacterials, Varaprasad Bobbarala, IntechOpen, Ltd. United Kingdom, London https://doi.org/10.5772/61300. https://www.intechopen.com/chapters/49246
Iesa MA (2021a) Biology of Brinjal Shoot and Fruit Borer (Leucinodes orbonalis Guenee) and screening of various genotypes for resistance. Turk. Online J. Qual. Inq. 12:6.6025–6032.
Iesa MA (2021b) Studies on Banana Insect Pest complex in tropical and subtropical areas of Asia. Turk. Online J. Qual. Inq. 12:6: 10039–10047
Iesa MA (2021c) predatory role of green lacewing Chrysoperla nipponensis larvae (Neuroptera: Chrysopidae) reared on different diets. Tianjin Daxue Xuebao. https://doi.org/10.17605/osf.io/tfxhp. 64: 08
Iesa MA (2021d) Bio efficacy check of different synthetic chemicals applied against whitefly (bemisia tabaci Gennadius) in tomato to enhance vegetable production for growing human populations. Tianjin Daxue Xuebao 54: (08) https://doi.org/10.17605/OSF.IO/S4BGX
Iesa MA (2021e) Foraging behaviour of apidae bees on rapeseed flowers Brassica napusunder open conditions. Tianjin Daxue Xuebao. https://doi.org/10.17605/osf.io/vbqze. 64: 08
Iesa MA (2021f) Rise of health related issues and management of health services in Asia. Journal of Tianjin University Science and Technology, 54. 08. https://doi.org/10.17605/osf.io/vz8yk
Ingenieur (2021) Biomimetic adhesives from natural polymers. Vom Fachbereich Maschinenbau und Verfahrenstechnik der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades. Datum der mündlichen Prüfung, Tag der mündlichen Prüfung 22.03: 1–227.
International Conference on Tissue Engineering (ICTG) (2021) Enhancing the Recent Advancements and Innovations in Tissue Engineering. Euro Sci Con, Tissue engineering 2021 on February 25–26, 2021 in London, UK.
Itoh T (2021) Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7, Biosci. Biotechnol. Biochem. 85: 6. 1314–1323, https://doi.org/10.1093/bbb/zbab058
Jack CI, Qiu J and Benny KKC (2021) Genomic insights into the sessile life and biofouling of barnacles (Crustacea:Cirripedia). Heliyon 7(6), e07291. https://doi.org/10.1016/j.heliyon.2021.e07291.
James TB, Kylie AR, Alan T, Marshall TLD and Heloise G (2021) A cross-species test of thefunction of cuticular traits in ants (Hymenoptera: Formicidae).Myrmecol. News. 31: 31–46 https://doi.org/10.25849/myrmecol.news_031:031
Jeong CB, Lee BY, Choi BS, Kim MS, Park JC, Kim DH, Wang MH, Park HG and Lee JS (2020) The genome of the harpacticoid copepod Tigriopus japonicus: Potential for its use in marine molecular ecotoxicology. Aquat. Toxicol. 222, 105462.
Johnson A, Neelakandan M, Jose J, Thomas S and Kalarikkal N (2021) Cellulose and Chitin Nanofibers: Potential Applications on Wound Healing. In: Nayak AK, Hasnain MS (Eds.) Biomedical Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4753-3-6
Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA and Anandharamakrishnan C (2021) A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. 2: 100036, ISSN 2666-8939, https://doi.org/10.1016/j.carpta.2021.100036.
Jung, W. J., and Park, R. D. (2014). Bioproduction of chitooligosaccharides: present and perspectives. Mar. Drugs. 12, 5328–5356. https://doi.org/10.3390/md12115328
Jungprasertchai N, Chuysinuan P and Ekabutr P (2021) Freeze-Dried Carboxymethyl Chitosan/Starch Foam for Use as a Haemostatic Wound Dressing. J Polym Environ J POLYM ENVIRON. https://doi.org/10.1007/s10924-021-02260-w
Kalem MC, Subbiah H, Leipheimer J, Glazier VE and Panepinto JC (2021) Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspo-fungin Resistance in Cryptococcus neoformans. mBio 12(1):e03225–20, https://doi.org/10.1128/mBio.03225-20. PMID: 33436441; PMCID: PMC7844544.
Kallenbach EMF, Hurley RR, Lusher A and Friberg N (2021) Chitinase digestion for the analysis of microplastics in chitinaceous organisms using the terrestrial isopod Oniscus asellus L. as a model organism. Sci. Total Environ, 786: 147455, 0048-9697, https://doi.org/10.1016/j.scitotenv.2021.147455
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this entry
Cite this entry
Ahmad Dar, S., Abd Al Galil, F.M. (2022). Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_72-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-83783-9_72-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83783-9
Online ISBN: 978-3-030-83783-9
eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics