Skip to main content

Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Chitin is a most abundant fibrous matter comprised of polysaccharide carbohydrates. Chitin is a dominant and main building material in the exoskeleton of many living organisms, including arthropods, crustaceans, fungi, and fishes. Chitin strengthens the exoskeleton, and enzymatic and chemical deacetylation by removing an acetyl group is converted into linear polysaccharide chitosan. In nature, chitosan is a carbohydrate acquired from the degradation of the hard skeleton of shellfish, arthropods, and crustaceans. Crustaceans and shellfishes contribute a significant proportion to total chitin used in the food-processing industry, besides having considerable applications in the biomedical field. The organisms that synthesize chitin employed a rigorous and complex enzymatic mechanism for degradation and body homeostasis. The enzyme uridine diphosphate-N-acetylglucosamine (UDPGlcNAc) is important for chitin synthesis; it brings out small chitin polymers, while a hydrolytic chitinase enzyme breaks down the chitin. In nature, the major biotic factor that degrades breaks down and mediates chitin hydrolysis is bacteria. Chitin and chitosan have multiple properties and features, including translucence, pliability, resilience, toughness, biodegradability, biocompatibility, innocuous film formation, revolutionizing the biomedical field. The emerging application of nanotechnology has utilized chitin and chitosan-originated materials to achieve innovations to transform the biomedical field. The multiple chitins and chitosan applications have contributed a major role in the polymer industry, especially in fabricating polymer scaffolds.

Biomedical sciences face many challenges, and the major role chitin and chitosan played in terms of their nano-/microparticles and encapsulation of cargos are interesting. The uniquely designed nanocarriers and microencapsulation techniques are very interesting based on chitin-based materials for effectiveness in delivering drugs, biologics, and vaccines. The encapsulated drugs and nanoparticles are specific to applications, dimension, and cargo-release properties. Chitosan has been used effectively and efficiently in hydrogel solutions, nano-/microparticles, drug and vaccine delivery, antibacterial, wound healing, anticancer, cancer diagnosis, chitin- and chitosan-based dressings, ophthalmology, antibacterial properties, antithrombogenic and hemostatic materials, antiaging cosmetics, antitumor activity, and vaccine adjuvant as customized biochemical properties; therefore it is one of the most critical, essential, and well-researched biomaterials. This book chapter is aimed to thoroughly discuss the biosynthesis, isolation, and applications of chitin and chitosan under various headings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(GlcNac)2:

(N-acetylglucosamine)2

ADP:

Adenosine diphosphate

B cell:

B cells

BPN:

Block-copolymer nanoparticles

BTTG:

British Textile Technology Group

CD4+Th2 cell:

Th2 subset of CD4+ T cells synthesizing cytokines

CDST cell:

The cluster of differentiation in T cell

CMCS:

Cell-mediated cytotoxicity

CO2:

Carbon dioxide

COS:

Chitosan oligosaccharide

CS:

Chitin synthase

CS:

Cytokine storm

CSN:

Chitosan glutamate

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cells

DD:

Degree of deacetylation

DNA:

Deoxyribonucleic acid

FA:

Fatty acid

GH:

Glycosyl hydrolases

GH-18:

Glycoside hydrolase family 18

GH-19:

Glycoside hydrolase family 19

GlcN:

d-glucosamine, a 2-amino-2-deoxy-d-glucopyranose

GlcNAc:

N-acetylglucosamine

GlNac:

N-acetylgalactosamine

GPIa-Iia:

Integrin alpha(2)beta(1)-very late antigen 2

GPIb-IX-V:

GPIb-IX-V complex

GPIIa-IIIb:

Glycoprotein IIb/IIIa integrin αIIbβ3

GPIIb-IIIa:

Immune-mediated thrombocytopenia

GPVI:

Immunoglobulin receptor-very late glycoprotein antigen (VI)

HCPT:

10-hydroxycamptothecin

HCPT:

Hyperosmolar conjunctival provocation test

HPLC:

High-pressure liquid chromatography

IFNs:

Type I interferons

IgA:

Immunoglobulin A

IgG:

Immunoglobulin G

IgN:

Immunoglobulin N

IL-13:

Interleukin-13

IL-4:

Interleukin-14

IL-6:

Interleukin 6 function as pro-inflammatory cytokine and an anti-inflammatory myokine

IR:

Infrared

LMPOs:

Lytic polysaccharide monooxygenases

LPL:

Lipoprotein lipase

M cells:

Mucosa-associated lymphoid cells

MAPK:

Mitogen-activated protein kinases

M-cell:

Microfold cells

MHC-I and MHC-II:

Major histocompatibility complex (MHC) class I and class II proteins

MR:

Magnetic resonance

NCBI:

National Center for Biotechnology Information

NF-kB:

Nuclear factor-κB (NF-κB)

NIBRG-14:

National Institute of Biomedical Genomics-14

NK:

Natural killer

NMR:

Nuclear magnetic resonance

PCL:

Poly-ɛ-caprolactone

PDGF:

Platelet-derived growth factor

PELCL (PDGF):

Collagen/poly(l-lactic acid-co-ε-caprolactone)

pH:

Power of H+ ion concentration which measures acidic/basic response of medium

PHHYCN:

Phosphatidylcholine hyaluronic acid chitin

PLC:

Phospholipase C, an assembly of enzymes lading to hydrolysis of phosphatidylinositol 4,5-bisphosphate

PLGA (VEGF):

Poly(lactic-co-glycolic acid

QD:

Quantum dot

RNA:

Ribonucleic acid

SARS-COV-2:

Severe acute respiratory syndrome coronavirus 2

STING-cGAS:

Stimulator of interferon genes-cytosolic cyclic GMP–AMP synthase

Syk:

Spleen tyrosine kinase

T cell:

Cells originated from thymus

TMC:

N, N, N-trimethylated chitosan

TNF-α:

Tumor necrosis factor α

TNF-γ :

Tumor necrosis factor γ

TXA2:

Thromboxane A2/prostaglandin H2

UDPGlcNAc:

Uridine diphosphate-N-acetylglucosamine glycosyltransferases

UDP-N:

Uridine diphosphate N-acetylglucosamine

UV:

Ultraviolet

VEC:

Vascular endothelial cells

VEGF:

Vascular endothelial growth factor

VSMC:

Vascular smooth muscle cells

VWF:

von Willebrand factor

ZnS:

Doped-zinc sulfide

References

  1. Ahmed M, Rozina K, Naveera N, and Fazli W (2021) Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod: 6 (1):11–25, https://doi.org/10.1016/j.jobab.2021.01.002

    Article  CAS  Google Scholar 

  2. Ahmed SB, Mohamed HI, and Al-Subaie AM (2021) Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci. Rep: 11, 9540. https://doi.org/10.1038/s41598-021-88907-z

    Article  CAS  Google Scholar 

  3. Ahuja V, Bhatt A K, and Sharma V (2021) Advances in glucosamine production from waste biomass and microbial fermentation technology and its applications. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-021-01968-y

  4. Al-Jbour ND, Beg MDH, Gimbun J, and Alam AKMM (2021) Preparation and characterization of low molecular weight chitosan with different degrees of deacetylation by the acid hydrolysis method. Int. J. Appl. Pharm: 13(2), 153–164, https://doi.org/10.22159/ijap.2021v13i2.32229

    Article  CAS  Google Scholar 

  5. Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA (2021). Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics: 13: 961, https://doi.org/10.3390/pharmaceutics13070961

    Article  CAS  Google Scholar 

  6. Alvites RD, Branquinho MV, Sousa AC (2021) Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int: 6613029, https://doi.org/10.1155/2021/6613029

  7. American Cancer Society (2021) Treating Breast Cancer. cancer.org.1.800.227.2345. www.cancer.org/aboutus/policies/content-usage.html, 1–105

  8. Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z and Chamieh H (2021) Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules: 11:1557. https://doi.org/10.3390/biom11111557

    Article  CAS  Google Scholar 

  9. Andrea Y, Mansilla AC, Ramiro P, Julieta RM, Carlos DL, Viviana MR, Claudia AC and Enrique MC (2021) Wheat germin-like protein: Studies on chitin/chitosan matrix for tissue engineering applications. J. Biosci. Bioeng: 131: 5, 549–556, ISSN 1389-1723, https://doi.org/10.1016/j.jbiosc.2021.01.001.

  10. Angst G, Pokorný J, Mueller CW, Prater I, Preusser S, Kandeler E, Meador T, Straková P, Hájek T, van Buiten G, and Angst S (2021) Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem: 159. 108302, https://doi.org/10.1016/j.soilbio.2021.108302

    Article  CAS  Google Scholar 

  11. Roy AG, Robinson JM, Sharma P, Rodriguez-Garcia A, Poussin MA, Nickerson-Nutter C and Powell DJJ (2021) Folate Receptor Beta as a Direct and Indirect Target for Antibody-Based Cancer Immunotherapy. Int. J. Mol. Sci. 22(11):5572, https://doi.org/10.3390/ijms22115572. PMID: 34070369; PMCID: PMC8197521.

  12. Das SS, Kar S, Singh SK, Hussain A, Verma PRP and Beg S (2022) Chapter 13- Carboxymethyl chitosan in advanced drug-delivery applications, Editor(s): Md Saquib Hasnain, Sarwar Beg, Amit Kumar Nayak. Chitosan in Drug Delivery, Acad. Press. 323–360, ISBN 9780128193365, https://doi.org/10.1016/B978-0-12-819336-5.00006-6.

  13. Truszkiewicz A, Aebisher D and Bartusik-Aebisher D (2022) MCF-7, ACHN, and A549 Cancer Cells Characterized by Quantitative Magnetic Resonance Imaging. In Vitro 12, 4.5174–5186 https://doi.org/10.33263/BRIAC124.51745186

  14. Liu, Y.; Sun, M.; Wang, T.; Chen, X.; Wang, H. Chitosan-based self-assembled nanomaterials: Their application in drug delivery. Wiley Online Library 2021b, 2, 20200069

    Google Scholar 

  15. Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M and Fontana CR (2019). Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: A Review. AAPS Pharm Sci Tech:20, 253

    Article  Google Scholar 

  16. Omer AM, Sadik WA, Demerdash AGME and Hassan HS (2021). Formulation of pH-sensitive aminated chitosan-gelatin crosslinked hydrogel for oral drug delivery. J. Saudi Chem. Soc. 25 (12): 101384.https://doi.org/10.1016/j.jscs.2021.101384.

    Article  CAS  Google Scholar 

  17. Sánchez-Cardona Y, Echeverri-Cuartas CE, López MEL and Moreno-Castellanos N (2021) Chitosan/Gelatin/PVA Scaffolds for Beta Pancreatic Cell Culture. Polym, 13:2372. https://doi.org/10.3390/polym13142372

    Article  CAS  Google Scholar 

  18. Narmani A and Jafari SM (2021) Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohy. Polym. 272:118464. https://doi.org/10.1016/j.carbpol.2021.118464. Epub, PMID: 34420724.

  19. Hoda RA, El-Zehery ZRA, Abdel-Rahman HM, Salem AA and El-Dougdoug KA (2021). Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes, Saudi J. Biol. Sci ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2021.12.036.

  20. Barzic AI and Albu RM (2021) Optical properties and biointerface interactions of chitin. Polym. Bull. 7 (8): 6535–6548. https://doi.org/10.1007/s00289-020-03406-x

    Article  CAS  Google Scholar 

  21. Berrada M (2021) Chitin and chitosan. Physicochemical Properties and Industrial Applications. https://doi.org/10.5772/intechopen.91553. ISBN: 978-1-78984-425-2. Print ISBN: 978-1-78984-424-5. eBook, ISBN: 978-1-83968-695-5.IntechOpenLtd. United Kingdom, London.

  22. Bian T and Klajn R (2021) Morphology control in crystalline nano-particle-polymer aggregates. Ann. N. Y. Acad. Sci. Annual Reports: Special Issue. 1505:1. 191–20. https://doi.org/10.1111/nyas.14674

    Article  CAS  Google Scholar 

  23. Blackman LD, Qu Y, Cass P, and Locock KES (2021) Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem. Soc. Rev: 50, 1587–1616, https://doi.org/10.1039/D0CS00986E

    Article  CAS  Google Scholar 

  24. Bochicchio S, Lamberti G, and Barba AA (2021) Polymer-Lipid Pharmaceutical Nano-carriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 13, 198. https://doi.org/10.3390/pharmaceutics13020198

    Article  CAS  Google Scholar 

  25. Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi KM, Badehnoosh B, Ghandali M, Hamblin MR. and Mirzaei H (2021) Chitosan-Based Nanoparticles Against Viral Infections. Front. Cell. Infect. Microbiol. 11: 175, https://doi.org/10.3389/fcimb.2021.643953

    Article  CAS  Google Scholar 

  26. Bram VDE, Jan T, and Sarah G (2021) Interleukin-1 as Innate Mediator of T Cell Immunity. Front. Immunol: 11. 3605. https://doi.org/10.3389/fimmu.2020.621931

    Article  CAS  Google Scholar 

  27. Briukhovetska D, Dörr J, and Endres S (2021) Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer: 21: 481–499. https://doi.org/10.1038/s41568-021-00363-z

    Article  CAS  Google Scholar 

  28. Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M and Fontana CR (2019). Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: A Review. AAPS Pharm Sci Tech:20, 253

    Article  Google Scholar 

  29. Campora S and Ghersi G (2021) Smart Nanoparticles in Biomedicine, An Overview of Recent Developments and Applications, 2021020619, https://doi.org/10.20944/preprints202102.0619.v1

  30. Candy DJ and Kilby BA (1962) Studies on Chitin Synthesis in the Desert Locust. J. Exp. Biol. 39, 129

    Article  CAS  Google Scholar 

  31. Caprifico AE, Polycarpou E, Foot PJS and Calabrese G (2020) Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol. Biosc. 21:1, https://doi.org/10.1002/mabi.202000312

    Article  CAS  Google Scholar 

  32. Capuana E, Lopresti F, Pavia FC, and Carrubba VL (2021) Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review. Poly. 13 (13) https://doi.org/10.3390/polym13132041

  33. Ta Q, Ting J, Harwood S and Al-Kassas R (2021) Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. European journal of pharmaceutical Sciences. Eur J Pharm Sci. 160(8):105765, https://doi.org/10.1016/j.ejps.2021.105765

  34. Celis D, Azocar MI, Enrione J, Paez M and Matiacevich M (2011) Characterization of salmon gelatin based film on antimicrobial properties of chitosan against E. coli, Procedia Food Sci: 1: 399–403, https://doi.org/10.1016/j.profoo.2011.09.061.

    Article  CAS  Google Scholar 

  35. Cheng YH, Chang YF, Ko YC and Liu CJ (2021) Development of a dual delivery of levofloxacin and prednisolone acetate via PLGA nanoparticles/thermosensitive chitosan-based hydrogel for postoperative management: An in-vitro and ex-vivo study. Int. J. Biol. Macromol. 180:365–374. https://doi.org/10.1016/j.ijbiomac.2021.03.017

    Article  CAS  Google Scholar 

  36. Wang X, Isbrandt T, Strube ML (2021c) Chitin Degradation Machinery and Secondary Metabolite Profiles in the Marine Bacterium Pseudoalteromonas rubra S4059. Mar. Drugs 19(2):108. https://doi.org/10.3390/md19020108

    Article  CAS  Google Scholar 

  37. Zhou L, Cai L, Ruan H, Zhang L, Wang J, Jiang H, Wu Y, Feng S and Chen J (2021) Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int. J. Biol. Macromol. 183:1145–1154. https://doi.org/10.1016/j.ijbiomac.2021.05.031.

    Article  CAS  Google Scholar 

  38. Cohen E and Casida JE (1983) Insect chitin synthetase as a biochemical probe for insecticidal compounds. Mode of Action, Metabolism and Toxicology Pergamon. Pergamon, Oxford 3: 25–32. https://doi.org/10.1016/B978-0-08-029224-3.50008-3.

  39. Confederat LG, Tuchilus CG, Dragan M, Sha’at M and Dragostin OM (2021) Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Mole. 26(12): 3694. https://doi.org/10.3390/molecules26123694

    Article  CAS  Google Scholar 

  40. Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi KM, Badehnoosh B, Ghandali M, Hamblin MR. and Mirzaei H (2021) Chitosan-Based Nanoparticles Against Viral Infections. Front. Cell. Infect. Microbiol. 11: 175, https://doi.org/10.3389/fcimb.2021.643953

    Article  CAS  Google Scholar 

  41. Curto MÁ, Butassi E, Ribas JC, Svetaz LA and Cortés JCG (2021) Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomed. 88:153556. https://doi.org/10.1016/j.phymed.2021.153556.

  42. Dai L, Li H and Zheng J (2022) Transcriptome analyses of the Chinese white pine beetle-fungal symbiont Leptographium qinlingensis under terpene stress or growth on host pine sawdust. Symbiosis. https://doi.org/10.1007/s13199-021-00822-z

  43. Das SS, Kar S, Singh SK, Hussain A, Verma PRP and Beg S (2022) Chapter 13- Carboxymethyl chitosan in advanced drug-delivery applications, Editor(s): Md Saquib Hasnain, Sarwar Beg, Amit Kumar Nayak. Chitosan in Drug Delivery, Acad. Press. 323–360, ISBN 9780128193365, https://doi.org/10.1016/B978-0-12-819336-5.00006-6.

  44. Daulagala PWHKP (2021) Chitinolytic Endophytic Bacteria as Biocontrol Agents for Phytopathogenic Fungi and Nematode Pests: A Review. Asian J Res. Bot. 5(3): 14–24 Asian Journal of Research in Biology. 65272.

    Google Scholar 

  45. Dave U, Somanader E, Baharlouei P, Pham L and Rahman MA (2021) Applications of Chitin in Medical, Environmental, and Agricultural Industries. J. Mar. Sci. Eng. 9, 1173. https://doi.org/10.3390/jmse9111173

    Article  Google Scholar 

  46. Deminaa TS, Akopovaa TA and Zelenetskya AN (2021). Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. ISSN 1811-2382. Polym. Sci. Ser. C. 63: 2: 219–226

    Google Scholar 

  47. Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh TH and Nathanael AJ (2021) Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Poly (Basel) 13(21):3782, https://doi.org/10.3390/polym13213782

    Article  CAS  Google Scholar 

  48. Singh B, Maharjan S, Cho KH, Cui L, Park IK, Choi YJ, Cho CS (2018) Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int. J. Biol. Macromol. 110: 54–64

    Article  CAS  Google Scholar 

  49. Rajoka MSR, Mehwish HM, Wu Y, Zhao L, Arfat Y, Majeed K and Anwaar S (2020) Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives, Crit. Rev. Biotechnol. 40:3, 365–379, https://doi.org/10.1080/07388551.2020.1713719

    Article  Google Scholar 

  50. Kong SZ, Li JC and Li SD (2018) Anti-Aging Effect of Chitosan Oligosaccharide on d-Galactose-Induced Subacute Aging in Mice. Mar. Drugs 16(6):181. https://doi.org/10.3390/md16060181

    Article  CAS  Google Scholar 

  51. Morganti P, Palombo M, Tishchenko G, Yudin VE, Guarneri F, Cardillo M, Del Ciotto P, Carezzi F, Morganti G, Fabrizi G (2014) Chitin-Hyaluronan Nanoparticles: A Multifunctional Carrier to Deliver Anti-Aging Active Ingredients through the Skin. Cosmetics. 1:140–158. https://doi.org/10.3390/cosmetics1030140

    Article  Google Scholar 

  52. Guo H, Li F, Qiu H, Liu J, Qin S, Hou Y and Wang C (2020) Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front. Pharmacol. 11:317, https://doi.org/10.3389/fphar.2020.00317

    Article  CAS  Google Scholar 

  53. Eivazzadeh KR, Radinekiyan F, Aliabadi HAM (2021) Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep 11, 650. https://doi.org/10.1038/s41598-020-80133-3

    Article  CAS  Google Scholar 

  54. Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, Sukhtezari S, Tahmasebi B, Maleki A, Madanchi H (2020). Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep. 12:11(1):650, https://doi.org/10.1038/s41598-020-80133-3.

  55. Elena JO, Peter EK, María FL and Julia SA (2021) Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Comput. Struct. Biotechnol. J. 19. 5466-5478, ISSN 2001-0370, https://doi.org/10.1016/j.csbj.2021.09.027.

  56. Europeanchitin Society Newsletter (2021) Chitin Science World: “Braconnot’s discovery is a world treasure. 2021. Malgorzata M. Jaworska, Faculty of Chemical and Process Eng., Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warsaw (POLAND). Proceedings of the 10-th International Conference of the European Chitin Society, Saint-Petersburg, Russia. Annales de Chimie, Tome LXXIX, pp. 265–304

    Google Scholar 

  57. Faqir Y, Ma J and Chai Y (2021) Chitosan in modern agriculture production. Plant. Soil. Environ. 67: (12): 679–699. https://doi.org/10.17221/332/2021-PSE

    Article  CAS  Google Scholar 

  58. Fatima B (2020) Quantitative Analysis by IR: Determination of Chitin/Chitosan DD, Modern Spectroscopic Techniques and Applications, Maaz Khan, Gustavo Morari do Nascimento and Marwa El-Azazy, IntechOpen, https://doi.org/10.5772/intechopen.89708. https://www.intechopen.com/chapters/69656

  59. Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L and Wu S (2021) Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. bioeng. biotechnol. 9: 111, https://doi.org/10.3389/fbioe.2021.650598

    Article  Google Scholar 

  60. Fernando LD, Dickwella WMC, Penfield J, Lipton AS, Washton N, Latgé J, Wang P, Zhang L and Wang T (2021) Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front. Mol. Biosci. 8: 814, https://doi.org/10.3389/fmolb.2021.727053

    Article  CAS  Google Scholar 

  61. Ganesan S, Baskaran B and Raj M (2021) Vibriosis Incidents in Marine Finfish Farms: Prevalence, Diagnosis of Pathogens using 16S rRNA, Histopathology, and In Vitro Antibacterial Evaluation Against Isolated Vibrio spp using Antibiotics and Probiotics. Thalassas. https://doi.org/10.1007/s41208-021-00368-3

  62. Ghimire S, Sarkar P, Rigby K, Maan A, Mukherjee S, Crawford KE and Mukhopadhyay K (2021) Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics. 13, 2127, https://doi.org/10.3390/pharmaceutics13122127

    Article  CAS  Google Scholar 

  63. Giacomo M, Marco V, Andrea F, Kevin C and Paola C (2021) Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications, https://doi.org/10.1039/d1nh00260k. nanoscale horiz. 6: 676–695

  64. Gilbert S and Herman E (2021) Exponential Growth and Decay. Rice University 6100 Main Street MS-375Houston, TX 77005

    Google Scholar 

  65. Giorgia Z, Siyuan D, Joost H, Natasa G, Uwe H, Roberta C, Clemens L, Piera DM and Laura M (2021) Fluorinated PLGA-PEG-Mannose Nanoparticles for Tumor-Associated Macrophage Detection by Optical Imaging and MRI. Front. Med. 8: 1374, https://doi.org/10.3389/fmed.2021.712367

    Article  Google Scholar 

  66. Gonçalves RC, Signini R, Rosa LM, Dias YSP, Vinaud MC, Junior RSL (2021) Carboxymethyl chitosan hydrogel formulations enhance the healing process in experimental partial-thickness (second-degree) burn wound healing. Acta Cir. Bras. 36: (3) https://doi.org/10.1590/ACB360303

    Article  Google Scholar 

  67. Gul A, Gallus I, Tegginamath A, Maryska J and Yalcinkaya F (2021) Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. Memb. 11, 908. https://doi.org/10.3390/membranes11120908

    Article  CAS  Google Scholar 

  68. Guo H, Li F, Qiu H, Liu J, Qin S, Hou Y and Wang C (2020) Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front. Pharmacol. 11:317, https://doi.org/10.3389/fphar.2020.00317

    Article  CAS  Google Scholar 

  69. Gushiken LFS, Beserra FP, Bastos JK., Jackson CJ, Pellizzon CH (2021) Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life 11: 665. https://doi.org/10.3390/life11070665

    Article  CAS  Google Scholar 

  70. Raimundo I, Silva R and Meunier L (2021) Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Microbiome 9: 43. https://doi.org/10.1186/s40168-020-00970-2

    Article  CAS  Google Scholar 

  71. Hahn T, Tafi E, Paul A, Salva R, Falabella P and Zibek S (2020) Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biote. 95 (11): 2775–2795. https://doi.org/10.1002/jctb.6533

    Article  CAS  Google Scholar 

  72. Han F, Jia X, Dai D, Yang X, Zhao J, Zhao Y, Fan Y, Yuan X (2013) Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF, Biomate. 34 7302–7313, https://doi.org/10.1016/j.biomaterials.2013.06.006

    Article  CAS  Google Scholar 

  73. Haque ST, Saha SK, Haque ME and Biswas N (2021) Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater. Sci. 23, https://doi.org/10.1039/D1BM01211H

  74. Hasibuan Z, Yuandani PA, Tanjung M (2021) Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Heliyon 7(10):e08197, https://doi.org/10.1016/j.heliyon.2021.e08197

    Article  CAS  Google Scholar 

  75. He W, Huang X, Zhang J, Zhu Y, Liu Y, Liu B, Wang Q, Huang X and He D (2021) CaCO3-Chitosan Composites Granules for Instant Hemostasis and Wound Healing. Materials 14: 3350. https://doi.org/10.3390/ma14123350

    Article  CAS  Google Scholar 

  76. Heras A., Rodríguez N.M., Ramos V.M., Agulló E (2001). N-methylene phosphonic chitosan: A novel soluble derivative. Carbohydr. Polym. 2001;44:1–8. https://doi.org/10.1016/S0144-8617(00)00195-8.

  77. Hoda RA, El-Zehery ZRA, Abdel-Rahman HM, Salem AA and El-Dougdoug KA (2021). Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes, Saudi J. Biol. Sci ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2021.12.036.

  78. Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM and Eijsink VG (2006). Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J.273(3):491–503. https://doi.org/10.1111/j.1742-4658.2005.05079.x.

    Article  CAS  Google Scholar 

  79. Hou J, Aydemir BE and Dumanli AG (2021) Understanding the structural diversity of chitinsas a versatile biomaterial. Philos. Trans. Royal Soc, 379: 20200331. https://doi.org/10.1098/rsta.2020.0331

    Article  CAS  Google Scholar 

  80. Hugo MG, Adriana FS and Erik JVM (2021) Sustainable chitosan production by mucoralean fungi using waste post-frying oils and corn steep liquor as substrates Int. J. Dev. Res, 11: (01), 43185–43194

    Google Scholar 

  81. Ibe C and Munro CA (2021) Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathog. 17(4): e1009470. https://doi.org/10.1371/journal.ppat.1009470

    Article  CAS  Google Scholar 

  82. Ibrahim HM and El-Zairy EMR (2015) Chitosan as a Biomaterial-Structure, Properties, and Electrospun Nanofibers, Concepts, Compounds and the Alternatives of Antibacterials, Varaprasad Bobbarala, IntechOpen, Ltd. United Kingdom, London https://doi.org/10.5772/61300. https://www.intechopen.com/chapters/49246

  83. Iesa MA (2021a) Biology of Brinjal Shoot and Fruit Borer (Leucinodes orbonalis Guenee) and screening of various genotypes for resistance. Turk. Online J. Qual. Inq. 12:6.6025–6032.

    Google Scholar 

  84. Iesa MA (2021b) Studies on Banana Insect Pest complex in tropical and subtropical areas of Asia. Turk. Online J. Qual. Inq. 12:6: 10039–10047

    Google Scholar 

  85. Iesa MA (2021c) predatory role of green lacewing Chrysoperla nipponensis larvae (Neuroptera: Chrysopidae) reared on different diets. Tianjin Daxue Xuebao. https://doi.org/10.17605/osf.io/tfxhp. 64: 08

  86. Iesa MA (2021d) Bio efficacy check of different synthetic chemicals applied against whitefly (bemisia tabaci Gennadius) in tomato to enhance vegetable production for growing human populations. Tianjin Daxue Xuebao 54: (08) https://doi.org/10.17605/OSF.IO/S4BGX

  87. Iesa MA (2021e) Foraging behaviour of apidae bees on rapeseed flowers Brassica napusunder open conditions. Tianjin Daxue Xuebao. https://doi.org/10.17605/osf.io/vbqze. 64: 08

  88. Iesa MA (2021f) Rise of health related issues and management of health services in Asia. Journal of Tianjin University Science and Technology, 54. 08. https://doi.org/10.17605/osf.io/vz8yk

    Article  Google Scholar 

  89. Ingenieur (2021) Biomimetic adhesives from natural polymers. Vom Fachbereich Maschinenbau und Verfahrenstechnik der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades. Datum der mündlichen Prüfung, Tag der mündlichen Prüfung 22.03: 1–227.

    Google Scholar 

  90. International Conference on Tissue Engineering (ICTG) (2021) Enhancing the Recent Advancements and Innovations in Tissue Engineering. Euro Sci Con, Tissue engineering 2021 on February 25–26, 2021 in London, UK.

    Google Scholar 

  91. Itoh T (2021) Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7, Biosci. Biotechnol. Biochem. 85: 6. 1314–1323, https://doi.org/10.1093/bbb/zbab058

  92. Jack CI, Qiu J and Benny KKC (2021) Genomic insights into the sessile life and biofouling of barnacles (Crustacea:Cirripedia). Heliyon 7(6), e07291. https://doi.org/10.1016/j.heliyon.2021.e07291.

    Article  CAS  Google Scholar 

  93. James TB, Kylie AR, Alan T, Marshall TLD and Heloise G (2021) A cross-species test of thefunction of cuticular traits in ants (Hymenoptera: Formicidae).Myrmecol. News. 31: 31–46 https://doi.org/10.25849/myrmecol.news_031:031

    Article  Google Scholar 

  94. Jeong CB, Lee BY, Choi BS, Kim MS, Park JC, Kim DH, Wang MH, Park HG and Lee JS (2020) The genome of the harpacticoid copepod Tigriopus japonicus: Potential for its use in marine molecular ecotoxicology. Aquat. Toxicol. 222, 105462.

    Article  CAS  Google Scholar 

  95. Johnson A, Neelakandan M, Jose J, Thomas S and Kalarikkal N (2021) Cellulose and Chitin Nanofibers: Potential Applications on Wound Healing. In: Nayak AK, Hasnain MS (Eds.) Biomedical Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4753-3-6

    Chapter  Google Scholar 

  96. Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA and Anandharamakrishnan C (2021) A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. 2: 100036, ISSN 2666-8939, https://doi.org/10.1016/j.carpta.2021.100036.

  97. Jung, W. J., and Park, R. D. (2014). Bioproduction of chitooligosaccharides: present and perspectives. Mar. Drugs. 12, 5328–5356. https://doi.org/10.3390/md12115328

    Article  CAS  Google Scholar 

  98. Jungprasertchai N, Chuysinuan P and Ekabutr P (2021) Freeze-Dried Carboxymethyl Chitosan/Starch Foam for Use as a Haemostatic Wound Dressing. J Polym Environ J POLYM ENVIRON. https://doi.org/10.1007/s10924-021-02260-w

  99. Kalem MC, Subbiah H, Leipheimer J, Glazier VE and Panepinto JC (2021) Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspo-fungin Resistance in Cryptococcus neoformans. mBio 12(1):e03225–20, https://doi.org/10.1128/mBio.03225-20. PMID: 33436441; PMCID: PMC7844544.

  100. Kallenbach EMF, Hurley RR, Lusher A and Friberg N (2021) Chitinase digestion for the analysis of microplastics in chitinaceous organisms using the terrestrial isopod Oniscus asellus L. as a model organism. Sci. Total Environ, 786: 147455, 0048-9697, https://doi.org/10.1016/j.scitotenv.2021.147455

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmad Dar, S., Abd Al Galil, F.M. (2022). Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics