Skip to main content

Biodegradable Food Packaging Materials

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

The nonbiodegradability of synthetic plastics has emerged as one of the main challenges causing concerns among scientific researchers in recent years. Their excess usage as the food packaging material is especially discouraging as these materials have noxious impacts on the environment and human beings. Biodegradable polymers (natural materials capable of undergoing complete biodegradation) have now been considered an efficient alternative to these plastics as the biodegradable polymers efficiently mimic/improve the properties of synthetic polymers required for food packaging applications. Furthermore, discarding these materials in the environment is not a problem as the normal degradation pathways will be more than enough to assimilate these degradable polymers. This chapter aims to organize the literature associated with these specifics into different categories depending on the origin of the biopolymers. The case studies were divided into natural polymers, biopolymers extracted from renewable resources, and synthetic polymers containing monomers extracted from fossil reservoirs. Moreover, the fundamentals associated with the food packaging applications, including preparative methodologies for biodegradable film, properties of the synthesized films, quality check experiments, etc., are discussed in detail for presenting an overview of the said topic. This chapter will act as a guideline for the new researchers having an intention of exploring this field and will present a summary of the recent progress in this field for the currently associated scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

13CNMR:

Carbon-13 nuclear magnetic resonance spectroscopy

1HNMR:

Proton nuclear magnetic resonance spectroscopy

AFM:

Atomic Force Microscopy

Ag:

Silver

ASTM:

American Society of Testing and Materials

CEO:

Clove essential oil

CMC:

Carboxymethyl cellulose

CNCs:

Cellulose nanocrystals

CNFs:

Cellulose nanofibrils

CO2:

Carbon dioxide

CO2PC:

Carbon dioxide permeability coefficient

CS:

Chitosan

CuO:

Copper oxide

DCNP:

Dye-clay hybrid nanopigment

DSC:

Differential scanning calorimetry

EM:

Elastic modulus

FDA:

Food and Drug Administration

FTIR:

Fourier transform infrared spectroscopy

H2O:

Water

HSPI:

Hybrid sorubium protein isolate

LAE:

Lauroyl arginate ethyl

LCNFs:

Lignocellulose nanofibrils

MgO:

Magnesium oxide

NMR:

Nuclear magnetic resonance

NMs:

Nanomaterials

NPs:

Nanoparticles

OPC:

Oxygen permeability coefficient

OTR:

Oxygen transmission rate

PBAT:

Polybutylene adipate terephthalate

PBS:

Polybutylene succinate

PCL:

Polycaprolactone

PGA:

Polyglycolic acid

PHAs:

Polyhydroxyalkanoates

PHB:

Poly (3-hydroxybutyrate)

PHBV:

Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)

PLA:

Polylactic acid

PVA:

Polyvinyl alcohol

SEM:

Scanning electron microscopy

SM:

Sodium metabisulfite

SPNCC:

Sugar palm nanocrystalline cellulose

SPS:

Sugar palm starch

TEGO:

Thermally exfoliated graphene oxide

TEM:

Transmission electron microscopy

Tg:

Glass transition temperature

TGA:

Thermal gravimetric analysis

TiO2:

Titanium dioxide

TPS:

Thermoplastic starch

TS:

Tensile strength

US:

United States

UV-VIS:

Ultraviolet-visible spectroscopy

WPC:

Whey protein isolate

WVPC:

Water vapor permeability coefficient

WVTR:

Water vapor transmission rate

XRD:

X-ray diffraction analysis

ZnO:

Zinc oxide

References

  1. Singh R, Sharma R, Shaqib M, Sarkar A, Chauhan KD (2021) Biodegradable polymers as packaging materials. In: Biopolymers and their industrial applications. Elsevier, p 245-259.

    Google Scholar 

  2. Alhanish A, Ali GAM, Recycling the plastic wastes to carbon nanotubes, Waste recycling technologies for nanomaterials manufacturing, ASH Makhlouf, GAM Ali,. 2021, Springer: Cham. 701-727.

    Chapter  Google Scholar 

  3. Chisenga S, Tolesa G, Workneh T (2020) Biodegradable food packaging materials and prospects of the fourth industrial revolution for tomato fruit and product handling. Int J Food Sci 2020

    Google Scholar 

  4. Dilkes-Hoffman LS, Lane JL, Grant T, Pratt S, Lant PA, and Laycock B (2018) Environmental impact of biodegradable food packaging when considering food waste. J Clean Prod 180:325-334

    Article  CAS  Google Scholar 

  5. Haroun AAA, Rabie AGM, Ali GAM, and Abdelrahim MYM (2019) Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler. Turk J Chem 43(3):750-759

    Article  CAS  Google Scholar 

  6. Bai B, Wang W, and Jin H (2020) Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water. Energy 191:116527

    Article  CAS  Google Scholar 

  7. Peng R, Xia M, Ru J, Huo Y, and Yang Y (2018) Microbial degradation of polyurethane plastics. Sheng wu gong cheng xue bao= Chinese J Biotechnol 34(9):1398-1409

    CAS  Google Scholar 

  8. Wu F, Misra M, and Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging Prog Polym Sci:101395

    Google Scholar 

  9. Salgado PR, Di Giorgio L, Musso YS, and Mauri AN (2021) Recent developments in smart food packaging focused on biobased and biodegradable polymers. Front Sustain Food Syst 5:125

    Article  Google Scholar 

  10. Ali SS, Elsamahy T, Koutra E, Kornaros M, El-Sheekh M, Abdelkarim EA, Zhu D, and Sun J (2021) Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci Total Environ 771:144719

    Article  CAS  Google Scholar 

  11. MacLeod M, Arp HPH, Tekman MB, and Jahnke A (2021) The global threat from plastic pollution. Science 373(6550):61-65

    Article  CAS  Google Scholar 

  12. Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard GH, and Hilleary MA (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369(6510):1515-1518

    Article  CAS  Google Scholar 

  13. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling nanofibers from polyethylene terephthalate waste using electrospinning technique, in Waste recycling technologies for nanomaterials manufacturing, ASH Makhlouf, GAM Ali. 2021, Springer: Cham. 805-821

    Chapter  Google Scholar 

  14. Soliman FS, El-Maghrabi HH, Ali GAM, Kammoun MA, and Nada AA, Reinforcement of petroleum wax by-product paraffins as phase change materials for thermal energy storage by recycled nanomaterials, in Waste recycling technologies for nanomaterials manufacturing, ASH Makhlouf, GAM Ali. 2021, Springer: Cham. p. 823-850

    Chapter  Google Scholar 

  15. Makhlouf ASH and Ali GAM, Waste recycling technologies for nanomaterials manufacturing. Topics in mining, metallurgy and materials engineering. 2021, Springer.

    Google Scholar 

  16. Ali GAM, Makhlouf ASH (2021) Fundamentals of waste recycling for nanomaterial manufacturing. In: ASH Makhlouf, GAM AliWaste recycling technologies for nanomaterials manufacturing, Springer: Cham, p 3-24.

    Chapter  Google Scholar 

  17. Hamdani SS, Li Z, Sirinakbumrung N, and Rabnawaz M (2020) Zein and PVOH-based bilayer approach for plastic-free, repulpable and biodegradable oil-and water-resistant paper as a replacement for single-use plastics. Ind Eng Chem Res 59(40):17856-17866

    Article  CAS  Google Scholar 

  18. Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D, Somarelli JA, Virdin J, and Dunphy-Daly MM (2020) Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int 144:106067

    Article  CAS  Google Scholar 

  19. RameshKumar S, Shaiju P, and O'Connor KE (2020) Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends. Curr Opinion Green Sustain Chem 21:75-81

    Article  Google Scholar 

  20. Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12(5):1127

    Article  CAS  Google Scholar 

  21. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, and Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23(4):383-395

    Article  Google Scholar 

  22. Fernandes SS, Romani VP, da Silva Filipini G, and G Martins (2020) Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polym Eng Sci 60(9):2214-2223

    Article  CAS  Google Scholar 

  23. Mangaraj S, Yadav A, Bal LM, Dash S, and Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77-96

    Article  Google Scholar 

  24. Hassan MES, Bai J, and Dou D-Q (2019) Biopolymers; definition, classification and applications. Egypt J Chem 62(9):1725-1737

    Google Scholar 

  25. Jafarzadeh S and Jafari SM (2021) Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit Rev Food Sci Nutr 61(16):2640-2658

    Article  CAS  Google Scholar 

  26. Kraśniewska K, Galus S, and Gniewosz M (2020) Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–A review. Int J Mol Sci 21(3):698

    Article  CAS  Google Scholar 

  27. Pires J, Paula CD, Souza V. G. L., Fernando AL, and Coelhoso I (2021) Understanding the barrier and mechanical behavior of different nanofillers in chitosan films for food packaging. Polymers 13(5):721

    Article  CAS  Google Scholar 

  28. Rydz J, Musioł M, Zawidlak-Węgrzyńska B, and Sikorska W (2018) Present and future of biodegradable polymers for food packaging applications. Biopolym Food Design:431-467

    Google Scholar 

  29. Abdillah AA and Charles AL (2021) Characterization of a natural biodegradable edible film obtained from arrowroot starch and iota-carrageenan and application in food packaging. Int J Biol Macromol 191:618-626

    Article  CAS  Google Scholar 

  30. Iamareerat B, Singh M, Sadiq MB, and Anal AK (2018) Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J Food Sci Technol 55(5):1953-1959

    Article  CAS  Google Scholar 

  31. Marichelvam M, Jawaid M, and Asim M (2019) Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7(4):32

    Article  CAS  Google Scholar 

  32. Bangar SP, Purewal SS, Trif M, Maqsood S, Kumar M, Manjunatha V, and Rusu AV (2021) Functionality and applicability of starch-based films: An eco-friendly approach. Foods 10(9):2181

    Article  CAS  Google Scholar 

  33. Woggum T, Sirivongpaisal P, and Wittaya T (2015) Characteristics and properties of hydroxypropylated rice starch based biodegradable films. Food Hydrocoll 50:54-64

    Article  CAS  Google Scholar 

  34. Anjum MN, Malik SA, Bilal CH, Rashid U, Nasif M, and Zia KM (2020) Polyhydroxyalkanoates-based bionanocomposites. Bionanocomposites:321-333

    Google Scholar 

  35. Manikandan NA, Pakshirajan K, and Pugazhenthi G (2020) Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. Int J Biol Macromol 154:866-877

    Article  CAS  Google Scholar 

  36. Tripathi AD, Raj Joshi T, Kumar Srivastava S, Darani KK, Khade S, and Srivastava J (2019) Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging. Prep Biochem Biotechnol 49(6):567-577

    Article  CAS  Google Scholar 

  37. Lin X, Fan X, Li R, Li Z, Ren T, Ren X, and Huang TS (2018) Preparation and characterization of PHB/PBAT–based biodegradable antibacterial hydrophobic nanofibrous membranes. Polym Adv Technol 29(1):481-489

    Article  CAS  Google Scholar 

  38. Cazón P and Vázquez M (2021) Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocoll 113:106530

    Article  CAS  Google Scholar 

  39. Mahmoodi A, Ghodrati S, and Khorasani M (2019) High-strength, low-permeable, and light-protective nanocomposite films based on a hybrid nanopigment and biodegradable PLA for food packaging applications. ACS omega 4(12):14947-14954

    Article  CAS  Google Scholar 

  40. Villegas C, Arrieta MP, Rojas A, Torres A, Faba S, Toledo M, Gutierrez M, Zavalla E, Romero J, and Galotto M (2019) PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Compos Part B 176:107336

    Article  CAS  Google Scholar 

  41. Yang W, Weng Y, Puglia D, Qi G, Dong W, Kenny JM, and Ma P (2020) Poly (lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol 144:102-110

    Article  CAS  Google Scholar 

  42. Siakeng R, Jawaid M, Asim M, and Siengchin S (2020) Accelerated weathering and soil burial effect on biodegradability, colour and textureof coir/pineapple leaf fibres/PLA biocomposites. Polymers 12(2):458

    Article  CAS  Google Scholar 

  43. Asadi S and Pirsa S (2020) Production of biodegradable film based on polylactic acid, modified with lycopene pigment and TiO2 and studying its physicochemical properties. J Polym Environ 28(2):433-444

    Article  CAS  Google Scholar 

  44. Din MI, Ghaffar T, Najeeb J, Hussain Z, Khalid R, and Zahid H (2020) Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Addit Contamin Part A 37(4):665-680

    Article  CAS  Google Scholar 

  45. Silva-Pereira MC, Teixeira JA, Pereira-Júnior VA, and Stefani R (2015) Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT-Food Sci Technol 61(1):258-262

    Article  CAS  Google Scholar 

  46. Patnaik S, Panda AK, and Kumar S (2020) Thermal degradation of corn starch based biodegradable plastic plates and determination of kinetic parameters by isoconversional methods using thermogravimetric analyzer. J Energy Inst 93(4):1449-1459

    Article  CAS  Google Scholar 

  47. Anugrahwidya R, Armynah B, and Tahir D (2021) Bioplastics Starch-Based with Additional Fiber and Nanoparticle: Characteristics and Biodegradation Performance: A Review. J Polym Environ 29(11):3459-3476

    Article  CAS  Google Scholar 

  48. Guaras MP, Alvarez VA, and Ludueña LN (2015) Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. J Polym Res 22(9):1-12

    Article  CAS  Google Scholar 

  49. Medina-Jaramillo C, Ochoa-Yepes O, Bernal C, and Famá L (2017) Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr Polym 176:187-194

    Article  CAS  Google Scholar 

  50. Peighambardoust SJ, Peighambardoust SH, Pournasir N, and Pakdel PM (2019) Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life 22:100420

    Article  Google Scholar 

  51. Dash KK, Ali NA, Das D, and Mohanta D (2019) Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 139:449-458

    Article  CAS  Google Scholar 

  52. Castillo LA, Farenzena S, Pintos E, Rodríguez MS, Villar MA, García MA, and López OV (2017) Active films based on thermoplastic corn starch and chitosan oligomer for food packaging applications. Food Packag Shelf Life 14:128-136

    Article  Google Scholar 

  53. Ghaderi M, Mousavi M, Yousefi H, and Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59-65

    Article  CAS  Google Scholar 

  54. Noorbakhsh-Soltani S, Zerafat M, and Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 189:48-55

    Article  CAS  Google Scholar 

  55. Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, and Kamal MR (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757-1763

    Article  CAS  Google Scholar 

  56. El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, and Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340-352

    Article  CAS  Google Scholar 

  57. Mostafa N, Farag AA, Abo-dief HM, and Tayeb AM (2018) Production of biodegradable plastic from agricultural wastes. Arab J Chem 11(4):546-553

    Article  CAS  Google Scholar 

  58. Azeredo H, Barud H, Farinas CS, Vasconcellos VM, and Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sust Food Syst 3:7

    Article  Google Scholar 

  59. He Y, Li H, Fei X, and Peng L (2021) Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr Polym 252:117156

    Article  CAS  Google Scholar 

  60. Murrieta-Martínez C, Soto-Valdez H, Pacheco-Aguilar R, Torres-Arreola W, Rodríguez-Felix F, and Márquez Ríos E (2018) Edible protein films: sources and behavior. Packag Technol Sci 31(3):113-122

    Article  CAS  Google Scholar 

  61. Mohamed SA, El-Sakhawy M, and El-Sakhawy MA-M (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydr Polym 238:116178

    Article  CAS  Google Scholar 

  62. Liu C, Huang J, Zheng X, Liu S, Lu K, Tang K, and Liu J (2020) Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag Shelf Life 24:100485

    Article  Google Scholar 

  63. Galus S and Lenart A (2019) Optical, mechanical, and moisture sorption properties of whey protein edible films. J Food Process Eng 42(6):e13245

    Article  Google Scholar 

  64. de Souza Silva R, Santos BMM, Fonseca GG, Prentice C, and Cortez-Vega WR (2020) Analysis of hybrid sorubim protein films incorporated with glycerol and clove essential oil for packaging applications. J Polym Environ 28(2):421-432

    Article  CAS  Google Scholar 

  65. Montes-de-Oca-Ávalos JM, Altamura D, Herrera ML, Huck-Iriart C, Scattarella F, Siliqi D, Giannini C, and Candal RJ (2020) Physical and structural properties of whey protein concentrate-Corn oil-TiO2 nanocomposite films for edible food-packaging. Food Packag Shelf Life 26:100590

    Article  Google Scholar 

  66. Kumar S, Shukla A, Baul PP, Mitra A, and Halder D (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178-184

    Article  Google Scholar 

  67. Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, and Öner M (2017) Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl Chem 89(12):1841-1848

    Article  CAS  Google Scholar 

  68. Zhao X, Ji K, Kurt K, Cornish K, and Vodovotz Y (2019) Optimal mechanical properties of biodegradable natural rubber-toughened PHBV bioplastics intended for food packaging applications. Food Packag Shelf Life 21:100348

    Article  Google Scholar 

  69. Cherpinski A, Torres-Giner S, Vartiainen J, Peresin MS, Lahtinen P, and Lagaron JM (2018) Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 25(2):1291-1307

    Article  CAS  Google Scholar 

  70. Fabra MJ, López-Rubio A, and Lagaron JM (2014) On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocoll 39:77-84

    Article  CAS  Google Scholar 

  71. Nazrin A, Sapuan S, Zuhri M, Ilyas R, Syafiq R, and Sherwani S (2020) Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Front Chem 8:213

    Article  CAS  Google Scholar 

  72. Trifol J, Plackett D, Sillard C, Szabo P, Bras J, and Daugaard AE (2016) Hybrid poly (lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Int 65(8):988-995

    Article  CAS  Google Scholar 

  73. Swaroop C and Shukla M (2018) Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 113:729-736

    Article  CAS  Google Scholar 

  74. Jeong S, Lee H-G, Cho CH, and Yoo S (2020) Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packag Shelf Life 25:100512

    Article  Google Scholar 

  75. Lin W, Ni Y, and Pang J (2020) Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. Int J Biol Macromol 149:853-860

    Article  CAS  Google Scholar 

  76. Cesur S, Köroğlu C, and Yalçın HT (2018) Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J Vinyl Addit Technol 24(4):376-387

    Article  CAS  Google Scholar 

  77. de Vasconcelos Pina H, de Farias AJA, Barbosa FC, de Lima Souza JW, de Sousa Barros AB, Cardoso MJB, Fook MVL, and Wellen RMR (2020) Microbiological and cytotoxic perspectives of active PCL/ZnO film for food packaging. Materials Research Express 7(2):025312

    Article  CAS  Google Scholar 

  78. Malik N (2020) Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Mater Technol:1-10

    Google Scholar 

  79. Dhar P, Gaur SS, Soundararajan N, Gupta A, Bhasney SM, Milli M, Kumar A, and Katiyar V (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: influence of filler type on thermomechanical, rheological, and barrier properties. Ind Eng Chem Res 56(16):4718-4735

    Article  CAS  Google Scholar 

  80. Haghighi H, Leugoue SK, Pfeifer F, Siesler HW, Licciardello F, Fava P, and Pulvirenti A (2020) Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocoll 100:105419

    Article  CAS  Google Scholar 

  81. Anžlovar A, Kržan A, and Žagar E (2018) Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arab J Chem 11(3):343-352

    Article  CAS  Google Scholar 

  82. Kim I, Viswanathan K, Kasi G, Sadeghi K, Thanakkasaranee S, and Seo J (2019) Poly (lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers 11(9):1427

    Article  CAS  Google Scholar 

  83. Ilyas R, Sapuan S, Ishak M, and Zainudin E (2018) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 202:186-202

    Article  CAS  Google Scholar 

  84. Yang W, Qi G, Ding H, Xu P, Dong W, Zhu X, Zheng T, and Ma P (2020) Biodegradable poly (lactic acid)-poly (ε-caprolactone)-nanolignin composite films with excellent flexibility and UV barrier performance. Composit Communicat 22:100497

    Article  Google Scholar 

  85. Kumar S, Mukherjee A, and Dutta J (2020) Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 97:196-209

    Article  CAS  Google Scholar 

  86. Qin Y, Li W, Liu D, Yuan M, and Li L (2017) Development of active packaging film made from poly (lactic acid) incorporated essential oil. Prog Org Coat 103:76-82

    Article  CAS  Google Scholar 

  87. Malathi A, Santhosh K, and Nidoni U (2014) Recent trends of biodegradable polymer: biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Curr Trends Technol Sci 3(2):73-79

    Google Scholar 

  88. Yu F, Fei X, He Y, and Li H (2021) Poly (lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. Int J Biol Macromol 186:770-779

    Article  CAS  Google Scholar 

  89. Liu W, Wang Z, Liu J, Dai B, Hu S, Hong R, Xie H, Li Z, Chen Y, and Zeng G (2020) Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocoll 108:106006

    Article  CAS  Google Scholar 

  90. Li M, Jia Y, Shen X, Shen T, Tan Z, Zhuang W, Zhao G, Zhu C, and Ying H (2021) Investigation into lignin modified PBAT/thermoplastic starch composites: Thermal, mechanical, rheological and water absorption properties. Ind Crop Prod 171:113916

    Article  CAS  Google Scholar 

  91. Calderón-Castro A, Vega-García MO, de Jesús Zazueta-Morales J, Fitch-Vargas PR, Carrillo-López A, Gutiérrez-Dorado R, Limón-Valenzuela V, and Aguilar-Palazuelos E (2018) Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. J Food Sci Technol 55(3):905-914

    Article  CAS  Google Scholar 

  92. Montava-Jorda S, Lascano D, Quiles-Carrillo L, Montanes N, Boronat T, Martinez-Sanz AV, Ferrandiz-Bou S, and Torres-Giner S (2020) Mechanical recycling of partially bio-based and recycled polyethylene terephthalate blends by reactive extrusion with poly (styrene-co-glycidyl methacrylate). Polymers 12(1):174

    Article  CAS  Google Scholar 

  93. Mallakpour S, Sirous F, and Hussain CM (2021) A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. Int J Biol Macromol 170:701-716

    Article  CAS  Google Scholar 

  94. Bhat VG, Narasagoudr SS, Masti SP, Chougale RB, Vantamuri AB, and Kasai D (2022) Development and evaluation of Moringa extract incorporated Chitosan/Guar gum/Poly (vinyl alcohol) active films for food packaging applications. Int J Biol Macromol 200:50-60

    Article  CAS  Google Scholar 

  95. Pirsa S (2020) Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. Int J Biol Macromol 163:666-675

    Article  CAS  Google Scholar 

  96. Thakur M, Majid I, Hussain S, and Nanda V (2021) Poly (ε-caprolactone): A potential polymer for biodegradable food packaging applications. Packag Technol Sci 34(8):449-461

    Article  CAS  Google Scholar 

  97. Montoille L, Vicencio CM, Fontalba D, Ortiz JA, Moreno-Serna V, Peponi L, Matiacevich S, and Zapata PA (2021) Study of the effect of the addition of plasticizers on the physical properties of biodegradable films based on kefiran for potential application as food packaging. Food Chem 360:129966

    Article  CAS  Google Scholar 

  98. Hernández-García E, Vargas M, González-Martínez C, and Chiralt A (2021) Biodegradable antimicrobial films for food packaging: Effect of antimicrobials on degradation. Foods 10(6):1256

    Article  CAS  Google Scholar 

  99. Wang GX, Huang D, Ji JH, Völker C, and Wurm FR (2021) Seawater-degradable polymers—fighting the marine plastic pollution. Advanc Sci 8(1):2001121

    Article  CAS  Google Scholar 

  100. Zare M, Namratha K, Ilyas S, Hezam A, Mathur S, and Byrappa K (2019) Smart fortified PHBV-CS biopolymer with ZnO–Ag nanocomposites for enhanced shelf life of food packaging. ACS Appl Mater Interfaces 11(51):48309-48320

    Article  CAS  Google Scholar 

  101. Tyuftin AA and Kerry JP (2021) Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packag Shelf Life 29:100688

    Article  Google Scholar 

  102. Dungani R, Sumardi I, Suhaya Y, Aditiawati P, Dody S, Rosamah E, Islam MN, Hartati S, and Karliati T (2021) Reinforcing effects of seaweed nanoparticles in agar-based biopolymer composite: Physical, water vapor barrier, mechanical, and biodegradable properties. Bioresources 16(3):5118

    Article  CAS  Google Scholar 

  103. Uthaya Kumar US, Abdulmadjid S, Olaiya N, Amirul A, Rizal S, Rahman A, Alfatah T, Mistar E, and Abdul Khalil H (2020) Extracted compounds from neem leaves as antimicrobial agent on the physico-chemical properties of seaweed-based biopolymer films. Polymers 12(5):1119

    Article  CAS  Google Scholar 

  104. Tarique J, Sapuan S, and Khalina A (2021) Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci Rep 11(1):1-17

    Article  CAS  Google Scholar 

  105. Mellinas C, Ramos M, Jiménez A, and Garrigós MC (2020) Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13(3):673

    Article  CAS  Google Scholar 

  106. de Carvalho APA and Conte-Junior CA (2021) Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: Emerging alternatives to food packaging and potentials in nanomedicine. Trends Food Sci Technol 116:370-386

    Article  CAS  Google Scholar 

  107. Bharathi S, Leena MM, Moses J, and Anandharamakrishnan C (2020) Nanofibre-based bilayer biopolymer films: enhancement of antioxidant activity and potential for food packaging application. Int J Food Sci Technol 55(4):1477-1484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawayria Najeeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Najeeb, J., Naeem, S. (2022). Biodegradable Food Packaging Materials. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics