Skip to main content

Biodegradable Electrode Materials for Sustainable Supercapacitors as Future Energy Storage Devices

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

The energy generation can be clean and sustainable if dependent on renewable resources. The prominent energy usage from renewable resources can occur only when efficient energy storage devices are developed. The batteries and supercapacitors have captured the energy market, but the run for smart electronics has leftover with the accumulation of e-waste. Researchers or industries are focusing on affordable and hazardous-chemical-free components. Recently, biodegradable nanomaterials have been explored highly for their application as an electrode in energy storage devices. Such electrodes are eco-friendly as the production of nanomaterials and their recycling are environment friendly, which ultimately leaves zero waste. This chapter will discuss the basics of biodegradable electrode materials applied in supercapacitors and the configuration of various composites electrodes and electrolytes. An extensive survey will summarize operational parameters such as energy storage ability, energy density, chemical stability, and durability of the devices developed from the biodegradable electrodes. Thus, biodegradable-based supercapacitors could create a new generation of cost-effective electronics with excellent potential to store energy in the ecological process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AN:

Acetonitrile

BGE:

Biodegradable electrodes

BMIMBF4:

Butyl-3-methylimidazolium tetrafluoroborate

CC:

Corncob carbon

CCH:

Carboxylated chitosan hydrogel

CNC:

Cellulose-nanocrystals

CNF:

Cellulose-nanofibrils

CV:

Cyclic voltammetry

DMC:

Dimethyl carbonate

EC:

Ethylene carbonate

EDLC:

Electric double layer capacitor

GCD:

Galvanostatic charge/discharge

PSMCs:

Porous sunflower marrow carbons

PVA:

Polyvinyl alcohol

References

  1. Das HT, Elango Balaji T, Mahendraprabhu K, and Vinoth S (2021) Cost-Effective Nanomaterials Fabricated by Recycling Spent Batteries. Waste Recycling Technologies for Nanomaterials Manufacturing:147–174

    Google Scholar 

  2. Ali GAM, Yusoff MM, Shaaban ER, and Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceramics International 43:8440–8448

    Article  CAS  Google Scholar 

  3. Ali GAM (2020) Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor. Journal of Electronic Materials 49:5411–5421

    Article  CAS  Google Scholar 

  4. Ali GAM and Makhlouf ASH, Fundamentals of Waste Recycling for Nanomaterial Manufacturing, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 3-24.

    Google Scholar 

  5. Rajkumar S, Elanthamilan E, Balaji TE, Sathiyan A, Jafneel NE, and Merlin JP (2020) Recovery of copper oxide nanoparticles from waste SIM cards for supercapacitor electrode material. Journal of Alloys and Compounds 849:156582-156582

    Article  CAS  Google Scholar 

  6. Tian W, Li Y, Zhou J, Wang T, Zhang R, Cao J, Luo M, Li N, Zhang N, Gong H, Zhang J, Xie L, and Kong B (2021) Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@ppy hybrid electrode. ACS Applied Materials and Interfaces 13(7):8285-8293

    Article  CAS  Google Scholar 

  7. Aboelazm EAA, Mohamed N, Ali GAM, Makhlouf ASH, and Chong KF, Recycling of Cobalt Oxides Electrodes from Spent Lithium-Ion Batteries by Electrochemical Method, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 91-123.

    Google Scholar 

  8. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701-727.

    Google Scholar 

  9. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805-821.

    Google Scholar 

  10. Ali GAM, Bakr ZH, Safarifard V, and Chong KF, Recycled Nanomaterials for Energy Storage (Supercapacitor) Applications, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 175-202.

    Google Scholar 

  11. Das HT, Mahendraprabhu K, Maiyalagan T, and Elumalai P (2017) Performance of Solid-state Hybrid Energy-storage Device using Reduced Graphene-oxide Anchored Sol-gel Derived Ni/NiO Nanocomposite. Scientific Reports 7(1):1-14

    Article  CAS  Google Scholar 

  12. Albarqouni Y, Ali GAM, Lee SP, Mohd-Hairul AR, Algarni H, and Chong KF (2021) Dual-functional single stranded deoxyribonucleic acid for graphene oxide reduction and charge storage enhancement. Electrochimica Acta 399:139366

    Article  CAS  Google Scholar 

  13. Elaiyappillai E, Akilarasan M, Chen S-M, Kogularasu S, Johnson PM, and Tamilarasan EB (2020) Sonochemically recovered aluminum oxide nanoparticles from domestic aluminum wastes as a highly stable electrocatalyst for proton-pump inhibitor (omeprazole) detection. Journal of The Electrochemical Society 167(2):027544

    Article  CAS  Google Scholar 

  14. Uddin MS, Das HT, Maiyalagan T, and Elumalai P (2018) Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: Insights from standard models. Applied Surface Science 449:445-453

    Article  CAS  Google Scholar 

  15. Das HT, Vinoth S, Thirumoorthi M, Alshahrani T, Hegazy H, Somaily H, Shkir M, and AIFaify S (2021) Tuning the Optical, Electrical, and Optoelectronic Properties of CuO Thin Films Fabricated by Facile SILAR Dip-Coating Technique for Photosensing Applications. Journal of Inorganic and Organometallic Polymers and Materials 31(6):2606-2614

    Google Scholar 

  16. Duraisamy E, Das HT, Selva Sharma A, and Elumalai P (2018) Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@carbon nanocomposite. New Journal of Chemistry 42(8):6114-6124

    Article  CAS  Google Scholar 

  17. Balaji TE, Tanaya Das H, and Maiyalagan T, Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications. 2021, John Wiley and Sons Inc. p. 1723-1746.

    Google Scholar 

  18. Kiran SK, Padmini M, Das HT, and Elumalai P (2017) Performance of asymmetric supercapacitor using CoCr-layered double hydroxide and reduced graphene-oxide. Journal of Solid State Electrochemistry 21(4):927-938

    Article  CAS  Google Scholar 

  19. Duraisamy E, Gurunathan P, Das HT, Ramesha K, and Elumalai P (2017) [Co (salen)] derived Co/Co3O4 nanoparticle@ carbon matrix as high-performance electrode for energy storage applications. Journal of Power Sources 344:103-110

    Article  CAS  Google Scholar 

  20. Das HT, Saravanya S, and Elumalai P (2018) Disposed Dry Cells as Sustainable Source for Generation of Few Layers of Graphene and Manganese Oxide for Solid-State Symmetric and Asymmetric Supercapacitor Applications. ChemistrySelect 3(46):13275-13283

    Article  CAS  Google Scholar 

  21. Vinoth S, Das HT, Govindasamy M, Wang S-F, Alkadhi NS, and Ouladsmane M (2021) Facile solid-state synthesis of layered molybdenum boride-based electrode for efficient electrochemical aqueous asymmetric supercapacitor. Journal of Alloys and Compounds 877:160192

    Article  CAS  Google Scholar 

  22. Jaiswal KK, Dutta S, Pohrmen CB, Banerjee I, Das HT, Jha N, Jha B, Verma M, and Ahmad W (2021) Bio-fabrication of selenium nanoparticles/micro-rods using cabbage leaves extract for photocatalytic dye degradation under natural sunlight irradiation. International Journal of Environmental Analytical Chemistry:1–18

    Google Scholar 

  23. Ali GAM, Megiel E, Cieciórski P, Thalji MR, Romański J, Algarni H, and Chong KF (2020) Ferrocene functionalized multi-walled carbon nanotubes as supercapacitor electrodes. Journal of Molecular Liquids:114064

    Google Scholar 

  24. Albarqouni YMY, Lee SP, Ali GAM, Ethiraj AS, Algarni H, and Chong KF (2021) Facile synthesis of reduced graphene oxide aerogel in soft drink as supercapacitor electrode. Journal of Nanostructure in Chemistry 12:417–427

    Google Scholar 

  25. Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, and Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Materials Chemistry and Physics 197:100–104

    Article  CAS  Google Scholar 

  26. Ali GAM, Sadegh H, Yusoff MM, and Chong KF (2019) Highly stable symmetric supercapacitor from cysteamine functionalized multi-walled carbon nanotubes operating in a wide potential window. Materials Today: Proceedings 16:2273-2279

    CAS  Google Scholar 

  27. Ali GA, Megiel E, Romański J, Algarni H, and Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. Journal of Molecular Liquids 271:31-39

    Article  CAS  Google Scholar 

  28. Ali GAM, Wahba OAG, Hassan AM, Fouad OA, and Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceramics International 41(6):8230-8234

    Article  CAS  Google Scholar 

  29. Thalji MR, Ali GAM, Liu P, Zhong YL, and Chong KF (2021) W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chemical Engineering Journal 409:128216

    Article  CAS  Google Scholar 

  30. Ali GAM, Habeeb OA, Algarni H, and Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. Journal of Materials Science 54:683-692

    Article  CAS  Google Scholar 

  31. Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, and Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. Journal of Solid State Electrochemistry 18(9):2505-2512

    Article  CAS  Google Scholar 

  32. Hu M, Wang J, Liu J, Wang P, Feng Y, Wang H, Nie N, Wang Y, and Huang Y (2019) A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Materials 21:174-179

    Article  Google Scholar 

  33. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, and Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustainable Chemistry & Engineering 5(9):2247–2253

    Article  CAS  Google Scholar 

  34. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, and Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Transactions 46(40):14034-14044

    Article  CAS  Google Scholar 

  35. Ali GAM, Manaf SAA, A D, Chong KF, and Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. Journal of Energy Chemistry 25(4):734-739

    Google Scholar 

  36. Yao Q, Wang H, Wang C, Jin C, and Sun Q (2018) One Step Construction of Nitrogen–Carbon Derived from Bradyrhizobium japonicum for Supercapacitor Applications with a Soybean Leaf as a Separator. ACS Sustainable Chemistry & Engineering 6(4):4695-4704

    Google Scholar 

  37. Jaiswal KK, Dutta S, Banerjee I, Pohrmen CB, Singh RK, Das HT, Dubey S, and Kumar V (2022) Impact of aquatic microplastics and nanoplastics pollution on ecological systems and sustainable remediation strategies of biodegradation and photodegradation. Science of The Total Environment 806:151358

    Article  CAS  Google Scholar 

  38. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, and Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conversion and Biorefinery

    Google Scholar 

  39. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, and Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. Journal of Physics D: Applied Physics 47(49):495307–495313

    Article  CAS  Google Scholar 

  40. Das HT, Hariprasad K, and Balaji T (2021) Graphene and Its Analogous 2D-Layered Materials for Flexible Persistent Energy Storage Devices in Consumer Electronics. 2D Functional Nanomaterials: Synthesis, Characterization and Applications:297–315

    Google Scholar 

  41. Wang Y, Lin X, Liu T, Chen H, Chen S, Jiang Z, Liu J, Huang J, and Liu M (2018) Wood-Derived Hierarchically Porous Electrodes for High-Performance All-Solid-State Supercapacitors. Advanced Functional Materials 28(52):1806207-1806207

    Article  CAS  Google Scholar 

  42. Wan C, Jiao Y, and Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 5(8):3819-3831

    Article  CAS  Google Scholar 

  43. Sun K, Yang Q, Zheng Y, Zhao G, Zhu Y, Zheng X, and Ma G (2017) High performance symmetric supercapacitor based on sunflower marrow carbon electrode material. International Journal of Electrochemical Science 12(3):2606-2617

    CAS  Google Scholar 

  44. Li XS, Xu MM, Yang Y, Huang QB, Wang XY, Ren JL, and Wang XH (2019) MnO2@Corncob Carbon Composite Electrode and All-Solid-State Supercapacitor with Improved Electrochemical Performance. Materials 2019, Vol. 12, Page 2379 12(15):2379-2379

    CAS  Google Scholar 

  45. Lu Q, Zhou S, Zhang Y, Chen M, Li B, Wei H, Zhang D, Zhang J, and Liu Q (2020) Nanoporous Carbon Derived from Green Material by an Ordered Activation Method and Its High Capacitance for Energy Storage. Nanomaterials 2020, Vol. 10, Page 1058 10(6):1058-1058

    CAS  Google Scholar 

  46. Lee H, Lee G, Yun J, Keum K, Hong SY, Song C, Kim JW, Lee JH, Oh SY, Kim DS, Kim MS, and Ha JS (2019) Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chemical Engineering Journal 366:62-71

    Article  CAS  Google Scholar 

  47. Wang Q, Zhang Y, Xiao J, Jiang H, Hu T, and Meng C (2019) Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode. Journal of Alloys and Compounds 782:1103-1113

    Article  CAS  Google Scholar 

  48. Xu H, Wang L, Zhang Y, Chen Y, and Gao S (2021) Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance. Nanoscale 13(22):10051-10060

    Article  CAS  Google Scholar 

  49. Fan Y-M, Song W-L, Li X, and Fan L-Z (2017) Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon 111:658-666

    Article  CAS  Google Scholar 

  50. Duan B, Gao X, Yao X, Fang Y, Huang L, Zhou J, and Zhang L (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482-491

    Article  CAS  Google Scholar 

  51. Gao F, Qu J, Zhao Z, Wang Z, and Qiu J (2016) Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta 190:1134-1141

    Article  CAS  Google Scholar 

  52. Zhou J, Bao L, Wu S, Yang W, and Wang H (2017) Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors. Carbohydrate Polymers 173:321-329

    Article  CAS  Google Scholar 

  53. Raj CJ, Rajesh M, Manikandan R, Yu KH, Anusha JR, Ahn JH, Kim DW, Park SY, and Kim BC (2018) High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. Journal of Power Sources 386:66-76

    Article  CAS  Google Scholar 

  54. Yin L, Cheng H, Mao S, Haasch R, Liu Y, Xie X, Hwang SW, Jain H, Kang SK, Su Y, Li R, Huang Y, and Rogers JA (2014) Dissolvable Metals for Transient Electronics. Advanced Functional Materials 24(5):645-658

    Article  CAS  Google Scholar 

  55. Lee G, Kang SK, Won SM, Gutruf P, Jeong YR, Koo J, Lee SS, Rogers JA, and Ha JS (2017) Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics. Advanced Energy Materials 7(18):1700157-1700157

    Article  CAS  Google Scholar 

  56. Yuan L, Yao B, Hu B, Huo K, Chen W, and Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 6(2):470-476

    Article  CAS  Google Scholar 

  57. Koga H, Tonomura H, Nogi M, Suganuma K, and Nishina Y (2016) Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chemistry 18(4):1117-1124

    Article  CAS  Google Scholar 

  58. Liu C, Cai Z, Zhao Y, Zhao H, and Ge F (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23(1):637-648

    Article  CAS  Google Scholar 

  59. Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, and Xu J (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydrate Polymers 157:344-352

    Article  CAS  Google Scholar 

  60. Zhang L, Yu X, Zhu P, Zhou F, Li G, Sun R, and Wong CP (2017) Laboratory filter paper as a substrate material for flexible supercapacitors. Sustainable Energy & Fuels 2(1):147-154

    Article  Google Scholar 

  61. Park MJ and Lee JS (2019) Foldable and Biodegradable Energy-Storage Devices on Copy Papers. Advanced Electronic Materials 5(1):1800411-1800411

    Article  CAS  Google Scholar 

  62. Jyothibasu JP, Kuo DW, and Lee RH (2019) Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 26(7):4495-4513

    Article  CAS  Google Scholar 

  63. Herou S, Schlee P, Jorge AB, and Titirici M (2018) Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry 9:18-24

    Article  Google Scholar 

  64. Taer E, Taslim R, Putri AW, Apriwandi A, and Agustino A (2018) Activated carbon electrode made from coconut husk waste for supercapacitor application. International Journal of Electrochemical Science 13(12):12072-12084

    Article  CAS  Google Scholar 

  65. Gui Z, Zhu H, Gillette E, Han X, Rubloff GW, Hu L, and Lee SB (2013) Natural Cellulose Fiber as Substrate for Supercapacitor. ACS Nano 7(7):6037-6046

    Article  CAS  Google Scholar 

  66. Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, and Wang F (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. Journal of Materials Chemistry A 1(1):63-67

    Article  CAS  Google Scholar 

  67. Xing J, Tao P, Wu Z, Xing C, Liao X, and Nie S (2019) Nanocellulose-graphene composites: a promising nanomaterial for flexible supercapacitors. Carbohydrate polymers 207:447-459

    Article  CAS  Google Scholar 

  68. Liu R, Ma L, Huang S, Mei J, Li E, and Yuan G (2016) Large Areal Mass and High Scalable and Flexible Cobalt Oxide/Graphene/Bacterial Cellulose Electrode for Supercapacitors. Journal of Physical Chemistry C 120(50):28480-28488

    Article  CAS  Google Scholar 

  69. Ehsani A, Bigdeloo M, Assefi F, Kiamehr M, and Alizadeh R (2020) Ternary nanocomposite of conductive polymer/chitosan biopolymer/metal organic framework: Synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. Inorganic Chemistry Communications 115:107885-107885

    Article  CAS  Google Scholar 

  70. Gao L, Xiong L, Xu D, Cai J, Huang L, Zhou J, and Zhang L (2018) Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Applied Materials and Interfaces 10(34):28918-28927

    Article  CAS  Google Scholar 

  71. Sun G, Li B, Ran J, Shen X, and Tong H (2015) Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors. Electrochimica Acta 171:13-22

    Article  CAS  Google Scholar 

  72. Salleh NA, Kheawhom S, and Mohamad AA (2021) Chitosan as biopolymer binder for graphene in supercapacitor electrode. Results in Physics 25:104244-104244

    Article  Google Scholar 

  73. Htut Z, Kim M, Lee E, Lee G, Baeck SH, and Shim SE (2017) Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors. Synthetic Metals 227:61-70

    Article  CAS  Google Scholar 

  74. Pandiselvi K and Thambidurai S (2014) Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics 20(4):551-561

    Article  CAS  Google Scholar 

  75. Ruan C, Ai K, and Lu L (2014) Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Advances 4(58):30887-30895

    Article  CAS  Google Scholar 

  76. Zhu B, Liu B, Qu C, Zhang H, Guo W, Liang Z, Chen F, and Zou R (2018) Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. Journal of Materials Chemistry A 6(4):1523-1530

    Article  CAS  Google Scholar 

  77. Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, and Dangbegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Advances 6(3):1800-1809

    Article  CAS  Google Scholar 

  78. Ji L, Wang B, Yu Y, Wang N, and Zhao J (2020) N, S co-doped biomass derived carbon with sheet-like microstructures for supercapacitors. Electrochimica Acta 331:135348

    Article  CAS  Google Scholar 

  79. Cao L, Li H, Xu Z, Zhang H, Ding L, Wang S, Zhang G, Hou H, Xu W, Yang F, and Jiang S (2021) Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diamond and Related Materials 114:108316

    Article  CAS  Google Scholar 

  80. Qiu D, Kang C, Gao A, Xie Z, Li Y, Li M, Wang F, and Yang R (2019) Sustainable low-temperature activation to customize pore structure and heteroatoms of biomass-derived carbon enabling unprecedented durable supercapacitors. ACS Sustainable Chemistry & Engineering 7(17):14629-14638

    Article  CAS  Google Scholar 

  81. Chang C, Li M, Wang H, Wang S, Liu X, Liu H, and Li L (2019) A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A 7(34):19939-19949

    Article  CAS  Google Scholar 

  82. Cheng P, Li T, Yu H, Zhi L, Liu Z, and Lei ZJTJoPCC (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. The Journal of Physical Chemistry C 120(4):2079-2086

    Google Scholar 

  83. Lian YM, Ni M, Zhou L, Chen RJ, and Yang WJCAEJ (2018) Synthesis of Biomass-Derived Carbon Induced by Cellular Respiration in Yeast for Supercapacitor Applications. Chemistry–A European Journal 24(68):18068-18074

    Article  CAS  Google Scholar 

  84. Thangavel R, Kaliyappan K, Ramasamy HV, Sun X, and Lee YSJC (2017) Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors. ChemSusChem 10(13):2805-2815

    Article  CAS  Google Scholar 

  85. Nguyen NT, Le P, and Phung VBT (2021) Biomass-derived carbon hooks on Ni foam with free binder for high performance supercapacitor electrode. Chemical Engineering Science 229:116053

    Article  CAS  Google Scholar 

  86. Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, Topal CO, Flanders BN, Wu J, and Li J (2010) Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. Journal of Power Sources 195(2):674-679

    Article  CAS  Google Scholar 

  87. Wang X, Li Y, Lou F, Buan MEM, Sheridan E, and Chen DJRa (2017) Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Advances 7(38):23859-23865

    Google Scholar 

  88. Gutiérrez BRP, Vera-Rivera FH, and Niño EDV (2017) Design and implementation of a web application to estimate the surface density of implanted ions in solid substrates. Journal of Physics: Conference Series 786(1):012015-012015

    Google Scholar 

  89. Ye W, Wang H, Ning J, Zhong Y, and Hu Y (2021) New types of hybrid electrolytes for supercapacitors. Journal of Energy Chemistry 57:219-232

    Article  Google Scholar 

  90. Liu T, Zhang F, Song Y, and Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A 5(34):17705-17733

    Article  CAS  Google Scholar 

  91. Yu J, Li M, Wang X, and Yang Z (2020) Promising High-Performance Supercapacitor Electrode Materials from MnO2 Nanosheets@Bamboo Leaf Carbon. ACS Omega 5(26):16299-16306

    Article  CAS  Google Scholar 

  92. Yang H, Liu Y, Kong L, Kang L, and Ran F (2019) Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors. Journal of Power Sources 426:47-54

    Article  CAS  Google Scholar 

  93. Venkatkarthick R and Qin J (2021) A new 3D composite of V2O5-based biodegradable ceramic material prepared by an environmentally friendly thermal method for supercapacitor applications. Environmental Technology & Innovation 22:101474-101474

    Article  CAS  Google Scholar 

  94. Wang Q, Du P, Liu J, Liu D, Niu J, and Liu P (2019) Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors. Applied Surface Science 487:295-303

    Article  CAS  Google Scholar 

  95. Manjakkal L, Franco FF, Pullanchiyodan A, González-Jiménez M, and Dahiya R (2021) Natural Jute Fibre-Based Supercapacitors and Sensors for Eco-Friendly Energy Autonomous Systems. Advanced Sustainable Systems 5(3):2000286-2000286

    Article  CAS  Google Scholar 

  96. Zhang W, Liu T, Mou J, Huang J, and Liu M (2020) Ultra-thick electrodes based on activated wood-carbon towards high-performance quasi-solid-state supercapacitors. Physical Chemistry Chemical Physics 22(4):2073-2080

    Article  CAS  Google Scholar 

  97. Guo N, Li M, Wang Y, Sun X, Wang F, and Yang R (2016) Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids. ACS Applied Materials and Interfaces 8(49):33626-33634

    Article  CAS  Google Scholar 

  98. Zhao C, Ding Y, Huang Y, Li N, Hu Y, and Zhao C (2021) Soybean root-derived N, O co-doped hierarchical porous carbon for supercapacitors. Applied Surface Science 555:149726-149726

    Article  CAS  Google Scholar 

  99. Adhikari RY, Terrell J, Targos J, Huffman KA, Wang H, and Cradlebaugh J (2019) Electrical characterization of leaf-based wires & supercapacitors. RSC Advances 9(47):27289-27293

    Article  CAS  Google Scholar 

  100. Liu Y, Zhou J, Tang J, and Tang W (2015) Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chemistry of Materials 27(20):7034-7041

    Article  CAS  Google Scholar 

  101. Liu Y, Zhou J, Zhu E, Tang J, Liu X, and Tang W (2015) Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. Journal of Materials Chemistry C 3(5):1011-1017

    Article  CAS  Google Scholar 

  102. Lu H and Zhao XS (2017) Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy & Fuels 1(6):1265-1281

    Article  CAS  Google Scholar 

  103. Hu W, Xiang R, Lin J, Cheng Y, and Lu C (2021) Lignocellulosic Biomass-Derived Carbon Electrodes for Flexible Supercapacitors: An Overview. Materials 2021, Vol. 14, Page 4571 14(16):4571-4571

    CAS  Google Scholar 

  104. Vinodh R, Sasikumar Y, Kim HJ, Atchudan R, and Yi M (2021) Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review. Journal of Industrial and Engineering Chemistry 104:155-171

    Article  CAS  Google Scholar 

  105. Wang K, Zhang X, Li C, Zhang H, Sun X, Xu N, and Ma Y (2014) Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. Journal of Materials Chemistry A 2(46):19726-19732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, H.T., Dutta, S., T, E.B., Das, P., Das, N., Ali, G.A.M. (2022). Biodegradable Electrode Materials for Sustainable Supercapacitors as Future Energy Storage Devices. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics