Skip to main content

Biodegradable Inorganic Nanocomposites for Industrial Applications

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Recently, the combination of biopolymeric matrices with other nanomaterials to produce new composites with a multifunctional property has attracted great attention in many fields due to the synergistic effect. The biodegradable polymers are a group family including aliphatic polyesters such as polylactide, poly (ε-caprolactone) (PCL), poly(p-dioxanone), and others. The combination of nanoparticles such as clays, nanotubes, magnetites, Au and Ag, and hydroxyapatite with biodegradable polymers such as cellulose, chitin whiskers, and lignin is utilized to fabricate the organic-inorganic nanocomposites with a novel property due to the synergistic effect. Recent achievements related to biodegradable polymer nanocomposites in preparation, characterization, and properties will be highlighted. Moreover, wastewater treatment will be covered in many technological applications such as energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

HPL:

Hydroxypropyl alkaline lignin

PCE:

Power conversion efficiency

PCL:

Poly(ε-caprolactone)

PES:

Poly(ethylene succinate)

PHB:

Poly(β-hydroxybutyrate)

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PLA:

Polylactide

PPDO:

Poly(p-dioxanone)

SMPs:

Shape memory polymers

References

  1. Geyer R, Jambeck JR, and Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Google Scholar 

  2. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Google Scholar 

  3. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, and Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218:191–197

    Google Scholar 

  4. Alhanish A and Ali GAM, Recent Developments in Wastewater Treatment Using Polymer/Clay Nanocomposites, in Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, AE Shalan, AS Hamdy Makhlouf, S Lanceros-Méndez, Editors. 2022, Springer International Publishing: Cham. p. 419–451

    Google Scholar 

  5. Haritz Sardon APD (2018) Plastics recycling with a difference. Science 360:380–381

    Google Scholar 

  6. Fan J, Zhang S, Li F, Yang Y, and Du M (2020) Recent advances in cellulose-based membranes for their sensing applications. Cellulose (Lond):1–23

    Google Scholar 

  7. Oliver-Ortega H, Vandemoortele V, Bala A, Julian F, Méndez JA, and Espinach FX (2021) Nanoclay Effect into the Biodegradation and Processability of Poly(lactic acid) Nanocomposites for Food Packaging. Polymers 13(16):2741

    Google Scholar 

  8. Gan Z, Abe H, and Doi Y (2000) Biodegradable Poly(ethylene succinate) (PES). 1. Crystal Growth Kinetics and Morphology. Biomacromolecules 1(4):704–712

    Google Scholar 

  9. Dedkova EN and Blatter LA (2014) Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Frontiers in Physiology 5(260)

    Google Scholar 

  10. Rivera-Briso AL and Serrano-Aroca Á (2018) Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers (Basel) 10(7)

    Google Scholar 

  11. Kim J-K, Kim DH, Joo SH, Choi B, Cha A, Kim KM, Kwon T-H, Kwak SK, Kang SJ, and Jin J (2017) Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries. ACS Nano 11(6):6114–6121

    Google Scholar 

  12. Vilivalam VDaVD (1998) Pharmaceutical applications of chitosan. Pharm. Sci. Technol. 1:246–253

    Google Scholar 

  13. Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, and Huang C (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7(5):709–729

    Google Scholar 

  14. George A, Shah PA, and Shrivastav PS (2019) Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 561:244–264

    Google Scholar 

  15. Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K, and Ali GAM (2021) The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials 11(9)

    Google Scholar 

  16. Ali GAM, Yusoff MM, and Feng CK (2015) Electrochemical properties of electrodeposited MnO2 nanoparticles. Advanced Materials Research 1113:550–553

    Google Scholar 

  17. Nengduo Z, Xuesong Y, and Hao G (2016) Highly conductive and flexible transparent films based on silver nanowire/chitosan composite. RSC Advances 6(53):47552–47561

    Google Scholar 

  18. Li Y, Zhao X, Xu Q, Zhang Q, and Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27(10):6458–63

    Google Scholar 

  19. Chin-San W and Hsin-Tzu L (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48(15):4449–4458

    Google Scholar 

  20. Fukuhara M, Kuroda T, Hasegawa F, Hashida T, Takeda M, Fujima N, Morita M, and Nakatani T (2021) Amorphous cellulose nanofiber supercapacitors. Sci Rep 11(1):6436

    Google Scholar 

  21. Vert M (2005) Aliphatic Polyesters: Great Degradable Polymers That Cannot Do Everything. Biomacromolecules 6(2):538–546

    Google Scholar 

  22. Naser AZ, Deiab I, and Darras BM (2021) Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Advances 11(28):17151–17196

    Google Scholar 

  23. Sharif A, Mondal S, and Hoque ME, Polylactic Acid (PLA)-Based Nanocomposites: Processing and Properties, in Bio-based Polymers and Nanocomposites: Preparation, Processing, Properties & Performance, ML Sanyang, M Jawaid, Editors. 2019, Springer International Publishing: Cham. p. 233–254

    Google Scholar 

  24. Stoclet G, Sclavons M, Lecouvet B, Devaux J, Van Velthem P, Boborodea A, Bourbigot S, and Sallem-Idrissi N (2014) Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Adv. 4(101):57553–57563

    Google Scholar 

  25. Marsh K and Bugusu B (2007) Food Packaging—Roles, Materials, and Environmental Issues. Journal of Food Science 72(3):R39–R55

    Google Scholar 

  26. Lu F, Yu H, Yan C, and Yao J (2016) Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Advances 6(51):46008–46018

    Google Scholar 

  27. Antonella M, Clara S, Donatella D, and Sossio C (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules 88:254–262

    Google Scholar 

  28. Shoaib M, Zubair A, Farid T, Jolly B, Shakoor RA, and Al-Thani NJ (2018) PLA-TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties. Ceramics International 44(14):16507–16513

    Google Scholar 

  29. Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, and Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry C 5(9):2318–2328

    Google Scholar 

  30. Silva MM, Lopes PE, Li Y, Pötschke P, Ferreira FN, and Paiva MC (2021) Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing. Applied Sciences 11(6):2580

    Google Scholar 

  31. Baskakov SА, Baskakova YV, Lyskov NV, Dremova NN, Irzhak AV, Kumar Y, Michtchenok A, and Shulga YМ (2018) Fabrication of current collector using a composite of polylactic acid and carbon nano-material for metal-free supercapacitors with graphene oxide separators and microwave exfoliated graphite oxide electrodes. Electrochimica Acta 260:557–563

    Google Scholar 

  32. Ghosh K, Ng S, Iffelsberger C, and Pumera M (2020) Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode. Chemistry – A European Journal 26(67):15746-15753

    Google Scholar 

  33. Lu Z, Lou Y, Ma P, Zhu K, Cong S, Wang C, Su X, and Zou G (2020) Highly Flexible and Transparent Polylactic Acid Composite Electrode for Perovskite Solar Cells. Solar RRL 4(10):2000320

    Google Scholar 

  34. Sharma K, Sharma V, and Sharma SS (2018) Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters 13(1):381

    Google Scholar 

  35. Abdelaal SAA, Wanchun X, Fatma SMH, and Xiujian Z (2021) Screen-printed carbon black/SiO2 composite counter electrodes for dye-sensitized solar cells. Solar Energy 230:902–911

    Google Scholar 

  36. Abdelaal SAA, Wanchun X, Fang S, Bin L, Hassan HAY, Ibrahim SA, and Xiujian Z (2021) MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. Solar Energy 218:117–128

    Google Scholar 

  37. Chalkias DA, Verykokkos NE, Kollia E, Petala A, Kostopoulos V, and Papanicolaou GC (2021) High-efficiency quasi-solid state dye-sensitized solar cells using a polymer blend electrolyte with “polymer-in-salt” conduction characteristics. Solar Energy 222:35–47

    Google Scholar 

  38. Gunasekaran A, Chen, Hsuan-Ying, Ponnusamy, Vinoth Kumar, Sorrentino, Andrea, Anandan, Sambandam (2021) Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells. Journal of Polymer Research 28(7)

    Google Scholar 

  39. Sinha VR, Bansal K, Kaushik R, Kumria R, and Trehan A (2004) Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23

    Google Scholar 

  40. Chen B and Evans JRG (2006) Poly(ε-caprolactone)−Clay Nanocomposites: Structure and Mechanical Properties. Macromolecules 39(2):747–754

    Google Scholar 

  41. Xu H and Budhlall BM (2018) Gold nanorods or nanospheres? Role of particle shape on tuning the shape memory effect of semicrystalline poly(ε-caprolactone) networks. RSC Advances 8(51):29283–29294

    Google Scholar 

  42. Wang Y, Li T, Ma P, Zhang S, Du M, Dong W, Xie Y, and Chen M (2018) Graphene-assisted fabrication of poly(ε-caprolactone)-based nanocomposites with high mechanical properties and self-healing functionality. New Journal of Chemistry 42(12):10348–10356

    Google Scholar 

  43. Jaroslav M, Jiří B, Alena M, Romana H, and Petr S (2019) Functionalization of graphene oxide with poly(ε-caprolactone) for enhanced interfacial adhesion in polyamide 6 nanocomposites. Composites Part B: Engineering 174:107019

    Google Scholar 

  44. Hong JK, Cooke SL, Whittington AR, and Roman M (2021) Bioactive Cellulose Nanocrystal-Poly(ε-Caprolactone) Nanocomposites for Bone Tissue Engineering Applications. Front Bioeng Biotechnol 9:605924

    Google Scholar 

  45. Juliana LV, Benjamin MY, Mikhailey DW, Jennifer LK, Lindsay ND, Clarissa SS, Savvas GH, Nigel KJ, Stephanie LM, and Francesca MK (2022) Biochar as a sustainable and renewable additive for the production of Poly(ε-caprolactone) composites. Sustainable Chemistry and Pharmacy 25:100586

    Google Scholar 

  46. Huang F-Y, Wang Y-Z, Wang X-L, Yang K-K, Zhou Q, and Ding S-D (2005) Preparation and characterization of a novel biodegradable poly(p-dioxanone)/montmorillonite nanocomposite. Journal of Polymer Science Part A: Polymer Chemistry 43(11):2298–2303

    Google Scholar 

  47. Ke-Ke Y, Xiu-Li W, and Yu-Zhong W POLY(p-DIOXANONE) AND ITS COPOLYMERS. Journal of Macromolecular Science, Part C 42(3):373-398

    Google Scholar 

  48. Xiu-Li W, Yan H, Jiang Z, Yan-Bo P, Rui H, and Yu-Zhong W (2009) Chitosan-graft poly(p-dioxanone) copolymers: preparation, characterization, and properties. Carbohydrate Research 344(6):801–807

    Google Scholar 

  49. Fan Z, Jing S, Wen X, Fujun W, Martin WK, Chenglong Y, Yongjie J, Kun S, and Lu W (2021) Development of a polycaprolactone/poly(p-dioxanone) bioresorbable stent with mechanically self-reinforced structure for congenital heart disease treatment. Bioactive Materials 6(9):2969–2982

    Google Scholar 

  50. Yoon KR, Kim W-J, and Choi IS (2004) Functionalization of Shortened Single-Walled Carbon Nanotubes with Poly(p-dioxanone) by “Grafting-From” Approach. Macromolecular Chemistry and Physics 205(9):1218–1221

    Google Scholar 

  51. Qiu Z-C, Zhang J-J, Niu Y, Huang C-L, Yang K-K, and Wang Y-Z (2011) Preparation of Poly(p-dioxanone)/Sepiolite Nanocomposites with Excellent Strength/Toughness Balance via Surface-Initiated Polymerization. Industrial \& Engineering Chemistry Research 50(17):10006–10016

    Google Scholar 

  52. Xu J and Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology Journal 5(11):1149–1163

    Google Scholar 

  53. Wang XW, Zhang CA, Wang PL, Zhao J, Zhang W, Ji JH, Hua K, Zhou J, Yang XB, and Li XP (2012) Enhanced Performance of Biodegradable Poly(butylene succinate)/Graphene Oxide Nanocomposites via in Situ Polymerization. Langmuir 28(18):7091–7095

    Google Scholar 

  54. Xun C, JeongIn G, and Margaret JS (2014) Role of polymer/filler interactions in the linear viscoelasticity of poly(butylene succinate)/fumed silica nanocomposite. Composites Science and Technology 95:8-15

    Google Scholar 

  55. Chen Z, Hu J, Ju J, and Kuang T (2019) Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO2 Foaming Process. Polymers 11(11):1852

    Google Scholar 

  56. Tian-Xiang J, Chuan L, Mi Z, Song-gang C, Feng C, and Qiang F (2015) Crystallization, mechanical performance and hydrolytic degradation of poly(butylene succinate)/graphene oxide nanocomposites obtained via in situ polymerization. Composites Part A: Applied Science and Manufacturing 68:193–201

    Google Scholar 

  57. Rivadeneira-Velasco KE, Utreras-Silva CA, Díaz-Barrios A, Sommer-Márquez AE, Tafur JP, and Michell RM (2021) Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers (Basel) 13(19)

    Google Scholar 

  58. Abdullah ZW and Dong Y (2018) Recent advances and perspectives on starch nanocomposites for packaging applications. Journal of Materials Science 53(22):15319–15339

    Google Scholar 

  59. Mohammad F, Arfin T, Bwatanglang IB, and Al-lohedan HA, Starch-Based Nanocomposites: Types and Industrial Applications, in Bio-based Polymers and Nanocomposites: Preparation, Processing, Properties & Performance, ML Sanyang, M Jawaid, Editors. 2019, Springer International Publishing: Cham. p. 157–181

    Google Scholar 

  60. Pérez CJ, Alvarez VA, Mondragón I, and Vázquez A (2007) Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites. Polymer International 56(5):686–693

    Google Scholar 

  61. Bipra NM, Pradeep KR, and Prafulla KS (2012) A Comparative Study of Biodegradable Starch-g-PEHA/SS and Starch-g-PEHA/MMT Nanocomposites. Polymers from Renewable Resources 3(4):171–183

    Google Scholar 

  62. Lendvai L, Apostolov A, and Karger-Kocsis J (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572

    Google Scholar 

  63. Muhammad Rakibul I and Shafiqul IM (2020) Enhanced electrochemical performance of flexible and eco-friendly starch/graphene oxide nanocomposite. Heliyon 6(10):e05292

    Google Scholar 

  64. Mollik SI, Ahmad MH, Alam RB, Bari MW, and Islam MR (2021) Improved thermal, mechanical, and electrochemical performance of bio-degradable starch/reduced graphene oxide nanocomposites. AIP Advances 11(9):095312

    Google Scholar 

  65. Zhang YN, Tiina; Salas, Carlos; Arboleda, Julio; Hoeger, Ingrid C.; Rojas, Orlando J (2013) Cellulose Nanofibrils. Source: Journal of Renewable Materials 3:195–211

    Google Scholar 

  66. Blessy J, Sagarika VK, Chinnu S, Nandakumar K, and Sabu T (2020) Cellulose nanocomposites: Fabrication and biomedical applications. Journal of Bioresources and Bioproducts 5(4):223–237

    Google Scholar 

  67. Opeyemi AO, Elias EE, Damian CO, and Maurice SO (2020) Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal of Biological Macromolecules 164:2477–2496

    Google Scholar 

  68. Dong Y-YL, Shan; Liu, Yan-Jun; Meng, Ling-Yan; Ma, Ming-Guo (2017) Ag@FeO@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution. Journal of Materials Science 52 8219–8230

    Google Scholar 

  69. Jian X, Xiaojuan L, Yuqin L, Shilin L, and Xiaogang L (2020) Coagulation mechanism of cellulose/metal nanohybrids through a simple one-step process and their interaction with Cr (VI). International Journal of Biological Macromolecules 142:404–411

    Google Scholar 

  70. Aisha Z, Jonathan Tersur O, Priya B, Soumyadip D, Mir Sahidul A, Diphankar D, Amartya B, and Dipankar C (2020) Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohydrate Polymers 246:116661

    Google Scholar 

  71. Li Y, Xia Z, Gong Q, Liu X, Yang Y, Chen C, and Qian C (2020) Green Synthesis of Free Standing Cellulose/Graphene Oxide/Polyaniline Aerogel Electrode for High-Performance Flexible All-Solid-State Supercapacitors. Nanomaterials (Basel) 10(8)

    Google Scholar 

  72. Sevilla M, Ferrero GA, and Fuertes AB (2016) Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Materials 5:33–42

    Google Scholar 

  73. Ahmed ASA, Xiang W, Amiinu IS, Li Z, Yu R, and Zhao X (2019) ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells. Sustainable Energy & Fuels 3(8):1976–1987

    Google Scholar 

  74. Mengjuan Z, Jianxin H, Lidan W, Shuyuan Z, Qian W, Shizhong C, Xiaohong Q, and Rongwu W (2018) Synthesis of carbonized-cellulose nanowhisker/FeS2@reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Solar Energy 166:71–79

    Google Scholar 

  75. Li K, Berton P, Kelley SP, and Rogers RD (2018) Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Crosslinked Films. Biomacromolecules 19(8):3291–3300

    Google Scholar 

  76. Zargar V, Asghari M, and Dashti A (2015) A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Reviews 2(3):204–226

    Google Scholar 

  77. Mohammed MA, Syeda JTM, Wasan KM, and Wasan EK (2017) An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 9(4)

    Google Scholar 

  78. Ramirez O, Bonardd S, Saldías C, Radic D, and Leiva Á (2017) Biobased Chitosan Nanocomposite Films Containing Gold Nanoparticles: Obtainment, Characterization, and Catalytic Activity Assessment. ACS Applied Materials \& Interfaces 9(19):16561–16570

    Google Scholar 

  79. Dakroury GA, Abo-Zahra SF, Hassan HS, and Fathy NA (2019) Utilization of silica–chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry 323(1):439–455

    Google Scholar 

  80. Zou R, Shan S, Huang L, Chen Z, Lawson T, Lin M, Yan L, and Liu Y (2020) High-Performance Intraocular Biosensors from Chitosan-Functionalized Nitrogen-Containing Graphene for the Detection of Glucose. ACS Biomaterials Science & Engineering 6(1):673–679

    Google Scholar 

  81. Ghasem Hosseini M and Shahryari E (2017) A Novel High-Performance Supercapacitor based on Chitosan/Graphene Oxide-MWCNT/Polyaniline. Journal of Colloid and Interface Science 496:371–381

    Google Scholar 

  82. Tseng C-H, Lin H-H, Hung C-W, Cheng IC, Luo S-C, Cheng IC, and Chen J-Z (2021) Electropolymerized Poly(3,4-ethylenedioxythiophene)/Screen-Printed Reduced Graphene Oxide–Chitosan Bilayer Electrodes for Flexible Supercapacitors. ACS Omega 6(25):16455–16464

    Google Scholar 

  83. Chawla P, Srivastava A, and Tripathi M (2019) Performance of chitosan based polymer electrolyte for natural dye sensitized solar cell. Environmental Progress & Sustainable Energy 38(2):630–634

    Google Scholar 

  84. Ahmed ASA, Xiang W, Saana Amiinu I, and Zhao X (2018) Zeolitic-imidazolate-framework (ZIF-8)/PEDOT:PSS composite counter electrode for low cost and efficient dye-sensitized solar cells. New Journal of Chemistry 42(21):17303–17310

    Google Scholar 

  85. Ahmed ASA, Xiang W, Shui F, Li B, Younes HHA, Amiinu IS, and Zhao X (2021) MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. Solar Energy 218:117–128

    Google Scholar 

  86. Ahmed ASA, Xiang W, Li Z, Amiinu IS, and Zhao X (2018) Yolk-shell m-SiO2@ Nitrogen doped carbon derived zeolitic imidazolate framework high efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta 292:276–284

    Google Scholar 

  87. En Mei Jin K-HP, Ju-Young Park, Jae-Wook Lee, Soon-Ho Yim, Xing Guan Zhao, Hal-Bon Gu, Sung-Young Cho, John Gerard Fisher, and Tae-Young Kim (2013) Preparation and Characterization of Chitosan Binder-Based TiO2 Electrode for Dye-Sensitized Solar Cells. International Journal of Photoenergy 2013:1–7

    Google Scholar 

  88. Keivanimehr F, Habibzadeh S, Baghban A, Esmaeili A, Mohaddespour A, Mashhadzadeh AH, Ganjali MR, Saeb MR, Fierro V, and Celzard A (2021) Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study. Sci Rep 11(1):3958

    Google Scholar 

  89. Nasri A, Jaleh B, Khazalpour S, Nasrollahzadeh M, and Shokouhimehr M (2020) Facile synthesis of graphitic carbon nitride/chitosan/Au nanocomposite: A catalyst for electrochemical hydrogen evolution. Int J Biol Macromol 164:3012–3024

    Google Scholar 

  90. Dube E, Oluwole DO, Prinsloo E, and Nyokong T (2018) A gold–chitosan composite with low symmetry zinc phthalocyanine for enhanced singlet oxygen generation and improved photodynamic therapy activity. New Journal of Chemistry 42(12):10214–10225

    Google Scholar 

  91. Karthika V, AlSalhi MS, Devanesan S, Gopinath K, Arumugam A, and Govindarajan M (2020) Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci Rep 10(1):18912

    Google Scholar 

  92. Friedman M and Brandon DL (2001) Nutritional and Health Benefits of Soy Proteins. Journal of Agricultural and Food Chemistry 49(3):1069–1086

    Google Scholar 

  93. Chen P, Zhang L, Peng S, and Liao B (2006) Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. Journal of Applied Polymer Science 101(1):334–341

    Google Scholar 

  94. Guo G, Tian H, and Wu Q (2019) Nanoclay incorporation into soy protein/polyvinyl alcohol blends to enhance the mechanical and barrier properties. Polymer Composites 40(9):3768–3776

    Google Scholar 

  95. Xuejiao J, Zhao L, Jinrong Y, Zhengzhong S, and Xin C (2016) One-step synthesis of soy protein/graphene nanocomposites and their application in photothermal therapy. Materials Science and Engineering: C 68:798–804

    Google Scholar 

  96. Xun Z, Ni S, Gao Z, Zhang Y, Gu J, and Huo P (2019) Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor. Polymers 11(11):1895

    Google Scholar 

  97. Shicun J, Kuang L, Qiang G, Wei Z, Hui C, Sheldon QS, and Jianzhang L (2020) Assembly of graphene oxide into the hyperbranched frameworks for the fabrication of flexible protein-based films with enhanced conductivities. Composites Part B: Engineering 196:108110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaal S. A. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmed, A.S.A., Hashem, F.S.M. (2022). Biodegradable Inorganic Nanocomposites for Industrial Applications. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics