Skip to main content

Biodegradable Nanocelluloses for Removal of Hazardous Organic Pollutants from Wastewater

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Sustainable nanotechnology-enabled contributions have made considerable and impressive solutions to provide contaminant-free water to the global society. Mainly, nanocellulose-based composites are widely employed in wastewater treatment technologies due to their unusual properties like high mechanical strength, eco-friendly, high surface area, functional ability, low cost of production, lightweight, abundant in nature, chemically inert, biodegradable, and regeneration. Moreover, nanocellulose-based composites are used to remove organic pollutants, including dyes, pesticides, fertilizers, organic chemicals, and drugs in adsorbents, catalysts, photocatalysts, flocculants, thin films, aerogels, and membranes. Here, we discussed fundamentals and potential applications concerning organic pollutants removal from water. Besides, various sustainable technologies developed based on the nanocellulose-based composites, and future perspectives are also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yung L, Ma H, Wang X, et al (2010) Fabrication of thin-film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives. J Memb Sci 365:52–58. https://doi.org/10.1016/j.memsci.2010.08.033

    Article  CAS  Google Scholar 

  2. Jeevanandam J, Manchala S, Danquah MK (2021) Wastewater Treatment by Photocatalytic Biosynthesized Nanoparticles. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer International Publishing, Cham, pp. 3135–3157

    Chapter  Google Scholar 

  3. Lewis SR, Datta S, Gui M, et al (2011) Reactive nanostructured membranes for water purification. Proc Natl Acad Sci 108:8577–8582. https://doi.org/10.1073/pnas.1101144108

    Article  Google Scholar 

  4. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21:7507. https://doi.org/10.1039/c0jm04308g

    Article  CAS  Google Scholar 

  5. Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: A review. J Environ Manage 166:387–406. https://doi.org/10.1016/j.jenvman.2015.10.039

    Article  CAS  Google Scholar 

  6. Gandamalla A, Manchala S, Anand P, et al (2021) Development of versatile CdMoO4/g-C3N4 nanocomposite for enhanced photoelectrochemical oxygen evolution reaction and photocatalytic dye degradation applications. Mater Today Chem 19:100392. https://doi.org/10.1016/j.mtchem.2020.100392

    Article  CAS  Google Scholar 

  7. Ganguli AK, Das A, Manchala S, Tiwari S (2020) Design of nanostructured materials for photocatalysis and photoelectrochemical applications. J Indian Chem Soc 97:1–8

    Google Scholar 

  8. Quist-Jensen CA, Macedonio F, Drioli E (2015) Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 364:17–32. https://doi.org/10.1016/j.desal.2015.03.001

    Article  CAS  Google Scholar 

  9. Gopakumar DA, Manna S, Pasquini D, et al (2018) Nanocellulose: Extraction and application as a sustainable material for wastewater purification. In: New Polymer Nanocomposites for Environmental Remediation. Elsevier, pp. 469–486

    Google Scholar 

  10. Obotey Ezugbe E, Rathilal S (2020) Membrane Technologies in Wastewater Treatment: A Review. Membranes (Basel) 10:89. https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  11. Barhoum A, Li H, Chen M, et al (2019) Emerging Applications of Cellulose Nanofibers. In: Handbook of Nanofibers. Springer International Publishing, Cham, pp. 1131–1156

    Chapter  Google Scholar 

  12. Nasir M, Hashim R, Sulaiman O, Asim M (2017) Nanocellulose: Preparation methods and applications. In: Cellulose-Reinforced Nanofibre Composites. Elsevier, pp. 261–276

    Chapter  Google Scholar 

  13. Islam MT, Alam MM, Patrucco A, et al (2014) Preparation of Nanocellulose: A Review. AATCC J Res 1:17–23. 10.14504/ajr.1.5.3

    Google Scholar 

  14. Mbakop S, Nthunya LN, Onyango MS (2021) Recent Advances in the Synthesis of Nanocellulose Functionalized–Hybrid Membranes and Application in Water Quality Improvement. Processes 9:611. https://doi.org/10.3390/pr9040611

  15. Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5:623–658. https://doi.org/10.1039/C7EN01029J

    Article  CAS  Google Scholar 

  16. Chanda S, Bajwa DS (2021) A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Rev Adv Mater Sci 60:325–341. https://doi.org/10.1515/rams-2021-0023

    Article  CAS  Google Scholar 

  17. Ioelovich M (2017) Characterization of Various Kinds of Nanocellulose. In: Handbook of Nanocellulose and Cellulose Nanocomposites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 51–100

    Chapter  Google Scholar 

  18. Abdelmouleh M, Boufi S, Belgacem MN, et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54. https://doi.org/10.1016/S0143-7496(03)00099-X

    Article  CAS  Google Scholar 

  19. Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111. https://doi.org/10.1063/1.2963491

    Article  CAS  Google Scholar 

  20. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. https://doi.org/10.1039/C3CS60204D

    Article  CAS  Google Scholar 

  21. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. https://doi.org/10.1039/C4NR01756K

    Article  CAS  Google Scholar 

  22. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks. Environ Health Perspect 117:1813–1831. https://doi.org/10.1289/ehp.0900793

    Article  Google Scholar 

  23. Pang YL, Abdullah AZ (2013) Current Status of Textile Industry Wastewater Management and Research Progress in Malaysia: A Review. CLEAN - Soil, Air, Water 41:751–764. https://doi.org/10.1002/clen.201000318

    Article  CAS  Google Scholar 

  24. Gholami Derami H, Jiang Q, Ghim D, et al (2019) A Robust and Scalable Polydopamine/Bacterial Nanocellulose Hybrid Membrane for Efficient Wastewater Treatment. ACS Appl Nano Mater 2:1092–1101. https://doi.org/10.1021/acsanm.9b00022

    Article  CAS  Google Scholar 

  25. Hankins NP, Singh R (2016) Emerging Membrane Technology for Sustainable Water Treatment. Elsevier

    Google Scholar 

  26. Lebogang L, Bosigo R, Lefatshe K, Muiva C (2019) Ag3PO4/nanocellulose composite for effective sunlight driven photodegradation of organic dyes in wastewater. Mater Chem Phys 236:121756. https://doi.org/10.1016/j.matchemphys.2019.121756

    Article  CAS  Google Scholar 

  27. Zhang Z, Sèbe G, Rentsch D, et al (2014) Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chem Mater 26:2659–2668. https://doi.org/10.1021/cm5004164

    Article  CAS  Google Scholar 

  28. Sai H, Fu R, Xing L, et al (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381. https://doi.org/10.1021/acsami.5b00846

    Article  CAS  Google Scholar 

  29. Hussain CM, Mishra AK (2018) Nanocomposites for Pollution Control. Jenny Stanford Publishing

    Book  Google Scholar 

  30. Mara DD (2003) Water, sanitation and hygiene for the health of developing nations. Public Health 117:452–456. https://doi.org/10.1016/S0033-3506(03)00143-4

    Article  CAS  Google Scholar 

  31. Moore M, Gould P, Keary BS (2003) Global urbanization and impact on health. Int J Hyg Environ Health 206:269–278. https://doi.org/10.1078/1438-4639-00223

    Article  Google Scholar 

  32. Johnson DM, Hokanson DR, Zhang Q, et al (2008) Feasibility of water purification technology in rural areas of developing countries. J Environ Manage 88:416–427. https://doi.org/10.1016/j.jenvman.2007.03.002

    Article  CAS  Google Scholar 

  33. Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: Including health in the equation - Millions suffer from preventable illnesses and die every year. Environ Sci Technol 41:17–24. https://doi.org/10.1021/es072435t

    Article  Google Scholar 

  34. Theron J, Cloete TE (2002) Emerging Waterborne Infections: Contributing Factors, Agents, and Detection Tools. Crit Rev Microbiol 28:1–26. https://doi.org/10.1080/1040-840291046669

    Article  CAS  Google Scholar 

  35. Margoum C, Malessard C, Gouy V (2006) Investigation of various physicochemical and environmental parameter influence on pesticide sorption to ditch bed substratum by means of experimental design. Chemosphere 63:1835–1841. https://doi.org/10.1016/j.chemosphere.2005.10.032

    Article  CAS  Google Scholar 

  36. Vallée R, Dousset S, Billet D, Benoit M (2014) Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond. Environ Sci Pollut Res 21:4895–4905. https://doi.org/10.1007/s11356-013-1840-5

    Article  CAS  Google Scholar 

  37. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197. https://doi.org/10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  38. Toledo PVO, Martins BF, Pirich CL, et al (2019) Cellulose Based Cryogels as Adsorbents for Organic Pollutants. Macromol Symp 383:1–12. https://doi.org/10.1002/masy.201800013

    Article  CAS  Google Scholar 

  39. Olivera S, Muralidhara HB, Venkatesh K, et al (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review. Carbohydr Polym 153:600–618. https://doi.org/10.1016/j.carbpol.2016.08.017

    Article  CAS  Google Scholar 

  40. Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crops Prod 49:33–42. https://doi.org/10.1016/j.indcrop.2013.04.022

    Article  CAS  Google Scholar 

  41. Abe K, Iwamoto S, Yano H (2007) Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  42. Narwade VN, Khairnar RS, Kokol V (2017) In-situ synthesised hydroxyapatite-loaded films based on cellulose nanofibrils for phenol removal from wastewater. Cellulose 24:4911–4925. https://doi.org/10.1007/s10570-017-1435-2

    Article  CAS  Google Scholar 

  43. Chan CH, Chia CH, Zakaria S, et al (2015) Cellulose nanofibrils: A rapid adsorbent for the removal of methylene blue. RSC Adv 5:18204–18212. https://doi.org/10.1039/c4ra15754k

    Article  CAS  Google Scholar 

  44. Ren W, Gao J, Lei C, et al (2018) Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774. https://doi.org/10.1016/j.cej.2018.05.143

    Article  CAS  Google Scholar 

  45. Baskaran S, Kookana RS, Naidu R (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Aust J Soil Res 41:749–760. https://doi.org/10.1071/SR02062

    Article  CAS  Google Scholar 

  46. Sinclair CJ, Boxall ABA, Parsons SA, Thomas MR (2006) Prioritization of pesticide environmental transformation products in drinking water supplies. Environ Sci Technol 40:7283–7289. https://doi.org/10.1021/es0603507

    Article  CAS  Google Scholar 

  47. Moradeeya PG, Kumar MA, Thorat RB, et al (2017) Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24:1319–1332. https://doi.org/10.1007/s10570-017-1197-x

    Article  CAS  Google Scholar 

  48. Roohani M, Habibi Y, Belgacem NM, et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024

    Article  CAS  Google Scholar 

  49. Chen W, Yu H, Liu Y, et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. https://doi.org/10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  50. Malberg JW, Savage EP, Osteryoung J (1978) Nitrates in drinking water and the early onset of hypertension. Environ Pollut 15:155–160. https://doi.org/10.1016/0013-9327(78)90103-9

    Article  CAS  Google Scholar 

  51. SUPER M, HEESE H, MACKENZIE D, et al (1981) An epidemiological study of well-water nitrates in a group of south west african/namibian infants. Water Res 15:1265–1270. https://doi.org/10.1016/0043-1354(81)90103-2

    Article  CAS  Google Scholar 

  52. Cantor KP (1997) Drinking water and cancer. Cancer Causes Control 8:292–308. https://doi.org/10.1023/A:1018444902486

    Article  CAS  Google Scholar 

  53. van Maanen JMS, van Dijk A, Mulder K, et al (1994) Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. Toxicol Lett 72:365–374. https://doi.org/10.1016/0378-4274(94)90050-7

    Article  Google Scholar 

  54. Alikhani M, Moghbeli MR (2014) Ion-exchange polyHIPE type membrane for removing nitrate ions: Preparation, characterization, kinetics and adsorption studies. Chem Eng J 239:93–104. https://doi.org/10.1016/j.cej.2013.11.013

    Article  CAS  Google Scholar 

  55. Richards LA, Vuachère M, Schäfer AI (2010) Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261:331–337. https://doi.org/10.1016/j.desal.2010.06.025

    Article  CAS  Google Scholar 

  56. Sehaqui H, Mautner A, Perez de Larraya U, et al (2016) Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr Polym 135:334–340. https://doi.org/10.1016/j.carbpol.2015.08.091

    Article  CAS  Google Scholar 

  57. Mautner A, Maples HA, Sehaqui H, et al (2016) Nitrate removal from water using a nanopaper ion-exchanger. Environ Sci Water Res Technol 2:117–124. https://doi.org/10.1039/c5ew00139k

    Article  CAS  Google Scholar 

  58. Mautner A, Kobkeatthawin T, Bismarck A (2017) Efficient continuous removal of nitrates from water with cationic cellulose nanopaper membranes. Resour Technol 3:22–28. https://doi.org/10.1016/j.reffit.2017.01.005

    Article  Google Scholar 

  59. Ho TTT, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406. https://doi.org/10.1007/s10570-011-9591-2

    Article  CAS  Google Scholar 

  60. Gros M, Petrović M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26. https://doi.org/10.1016/j.envint.2009.09.002

    Article  CAS  Google Scholar 

  61. Jelic A, Fatone F, Di Fabio S, et al (2012) Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment. Sci Total Environ 433:352–361. https://doi.org/10.1016/j.scitotenv.2012.06.059

    Article  CAS  Google Scholar 

  62. Yuan X, Qiang Z, Ben W, et al (2014) Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry. J Environ Sci (China) 26:1949–1959. https://doi.org/10.1016/j.jes.2014.06.022

    Article  Google Scholar 

  63. Kolpin DW, Furlong ET, Meyer MT, et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ Sci Technol 36:1202–1211. https://doi.org/10.1021/es011055j

    Article  CAS  Google Scholar 

  64. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: A review. Environ Sci Technol 35:3397–3406. https://doi.org/10.1021/es0003021

    Article  CAS  Google Scholar 

  65. Ghadim EE, Manouchehri F, Soleimani G, et al (2013) Adsorption properties of tetracycline onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0079254

    Article  CAS  Google Scholar 

  66. Topal M (2015) Uptake of tetracycline and degradation products by Phragmites australis grown in stream carrying secondary effluent. Ecol Eng 79:80–85. https://doi.org/10.1016/j.ecoleng.2015.03.011

    Article  Google Scholar 

  67. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  68. Xu XR, Li XY (2010) Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 78:430–436. https://doi.org/10.1016/j.chemosphere.2009.10.045

    Article  CAS  Google Scholar 

  69. Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: Equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249. https://doi.org/10.1016/j.ecoleng.2015.09.031

    Article  Google Scholar 

  70. Li J, Tao J, Ma C, et al (2020) Carboxylated cellulose nanofiber/montmorillonite nanocomposite for the removal of levofloxacin hydrochloride antibiotic from aqueous solutions. RSC Adv 10:42038–42053. https://doi.org/10.1039/d0ra08987g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikumar Manchala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manchala, S., Gandamalla, A., Rudrarapu, A. (2022). Biodegradable Nanocelluloses for Removal of Hazardous Organic Pollutants from Wastewater. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics