Skip to main content

Biodegradable Polymers

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Nowadays, synthetic polymers (plastics) are unavoidable as they are used in nearly every sector in our daily life, including bottles, packaging, boxes, households, cars, medical devices, and phones, to name a few. The sustained consumption of these materials will cause a tremendous accumulation of plastic waste in land and water bodies based on synthetic counterparts that are not biodegradable. Due to the necessity of plastics, numerous efforts were devoted to explore more sustainable materials with similar performance. Biodegradable polymers (BPs) were raised as a promising eco-friendly alternative as they are susceptible to hydrolytic or enzymatic cleavage. Many BPs have been developed until now, and several microorganisms/microorganisms capable of degrading them have been found in nature, invented, and even commercialized. In recent years, there has been an abundance of literature related to the BPs, which covered different aspects of this subject. At the same time, some focused on a specified polymer, specific application for a certain type; others covered biodegradation mechanisms in a particular environment or even the biodegradation of one polymer. This chapter is aimed to provide insight into the latest advances to the new researchers in the field with a general overview of the basic knowledge in the subject, including the various types and their capability to biodegrade in different environments with an emphasis on the most known BPs. Also, the factors affecting the biodegradation of BPs, in general, will be highlighted, and the future trends are also briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer. p. 701–727.

    Google Scholar 

  2. Satti SM and Shah AA (2020) Polyester-based biodegradable plastics: an approach towards sustainable development. Letters in Applied Microbiology 70(6):413–430

    Article  CAS  Google Scholar 

  3. Alimi OS, Claveau-Mallet D, Kurusu RS, Lapointe M, Bayen S, and Tufenkji N (2022) Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing? Journal of Hazardous Materials 423:126955

    Article  CAS  Google Scholar 

  4. Wang GX, Huang D, Ji JH, Völker C, and Wurm FR (2021) Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution. Advanced Science 8(1):1–26

    Google Scholar 

  5. Jiang L and Zhang J, Biodegradable and Biobased Polymers. Second Edi ed. Biodegradable and biobased polymers. In Applied plastics engineering handbook. 2017: William Andrew Publishing. 127–143.

    Google Scholar 

  6. Ranakoti L, Gangil B, Kumar Rakesh P, and Agrawal N (2021) Synthesis and Utilization of Biodegradable Polymers. Biobased Composites: Processing, Characterization, Properties, and Applications:167–174

    Google Scholar 

  7. Zhang F and King MW (2020) Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Advanced Healthcare Materials 9:1901358

    Article  CAS  Google Scholar 

  8. Tachibana K, Urano Y, and Numata K (2013) Biodegradability of nylon 4 film in a marine environment. Polymer Degradation and Stability 98(9):1847–1851

    Article  CAS  Google Scholar 

  9. Oppermann FB, Pickartz S, and Steinbüchel A (1998) Biodegradation of polyamides. Polymer Degradation and Stability 59(1–3):337–344

    Article  CAS  Google Scholar 

  10. Alhanish A and Ghalia MA, Investigating the Recent Development of Bio-based Polyurethane Foam Produced from Renewable Resources, in Eco-Friendly Adhesives for Wood and Natural Fiber Composites, TAK Mohammad Jawaid, Mohammed Nasir, Mohammad Asim, Editor. 2021, Springer. p. 231–254.

    Google Scholar 

  11. Zeng SH, Duan PP, Shen MX, Xue YJ, and Wang ZY (2016) Preparation and degradation mechanisms of biodegradable polymer: a review. IOP Conference Series: Materials Science and Engineering 137(July):012003–012003

    Article  Google Scholar 

  12. Scaffaro R, Maio A, Sutera F, Gulino Eo, and Morreale M (2019) Degradation and recycling of films based on biodegradable polymers: A short review. Polymers 11(4)

    Google Scholar 

  13. Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi A, and Dehghani F (2016) Biomedical Applications of Biodegradable Polyesters. Polymers 8(1):20–20

    Google Scholar 

  14. Cho HS, Moon HS, Kim M, Nam K, and Kim JY (2011) Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Management 31(3):475–480

    Article  CAS  Google Scholar 

  15. Shah AA, Hasan F, Hameed A, and Ahmed S (2008) Biological degradation of plastics: A comprehensive review. Biotechnology Advances 26(3):246–265

    Article  CAS  Google Scholar 

  16. Funabashi M, Ninomiya F, and Kunioka M (2009) Biodegradability evaluation of polymers by ISO 14855-2. International Journal of Molecular Sciences 10(8):3635–3654

    Article  CAS  Google Scholar 

  17. Nikolić MAL, Gauthier E, Colwell JM, Halley P, Bottle SE, Laycock B, and Truss R (2017) The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polymer Degradation and Stability 145:102–119

    Article  Google Scholar 

  18. Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM, Escobar Ivirico JL, Marí B, and Vidaurre A (2012) Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability 97(8):1241–1248

    Article  Google Scholar 

  19. Bagheri AR, Laforsch C, Greiner A, and Agarwal S (2017) Fate of So-Called Biodegradable Polymers in Seawater and Freshwater. Global Challenges 1(4):1700048–1700048

    Article  Google Scholar 

  20. Kasuya K-i, Takagi K-i, Ishiwatari S-i, Yoshida Y, and Doi Y (1998) Biodegradabilities of various aliphatic polyesters in natural waters. Polymer Degradation and Stability 59(1):327–332

    Google Scholar 

  21. Tsuji H and Suzuyoshi K (2002) Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater. Polymer Degradation and Stability 75(2):357–365

    Article  CAS  Google Scholar 

  22. Nakasaki K, Matsuura H, Tanaka H, and Sakai T (2006) Synergy of two thermophiles enables decomposition of poly-ε- caprolactone under composting conditions. FEMS Microbiology Ecology 58(3):373–383

    Article  CAS  Google Scholar 

  23. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, and Bayard R (2006) Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability 91(3):620–627

    Article  CAS  Google Scholar 

  24. Adhikari D, Mukai M, Kubota K, Kai T, Kaneko N, Araki KS, and Kubo M (2016) Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. Journal of Agricultural Chemistry and Environment 05(01):23–34

    Article  CAS  Google Scholar 

  25. Anstey A, Muniyasamy S, Reddy MM, Misra M, and Mohanty A (2014) Processability and Biodegradability Evaluation of Composites from Poly(butylene succinate) (PBS) Bioplastic and Biofuel Co-products from Ontario. Journal of Polymers and the Environment 22(2):209–218

    Article  CAS  Google Scholar 

  26. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, and Müller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299

    Article  CAS  Google Scholar 

  27. Ma Q, Shi K, Su T, and Wang Z (2020) Biodegradation of Polycaprolactone (PCL) with Different Molecular Weights by Candida antarctica Lipase. Journal of Polymers and the Environment 28(11):2947–2955

    Article  CAS  Google Scholar 

  28. Al Hosni AS, Pittman JK, and Robson GD (2019) Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management 97:105–114

    Article  Google Scholar 

  29. Thakur M, Majid I, Hussain S, and Nanda V (2021) Poly(ε-caprolactone): A potential polymer for biodegradable food packaging applications. Packaging Technology and Science 34(8):449–461

    Article  CAS  Google Scholar 

  30. Gan Z, Liang Q, Zhang J, and Jing X (1997) Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polymer Degradation and Stability 56(2):209–213

    Article  CAS  Google Scholar 

  31. Nevoralová M, Koutný M, Ujčić A, Starý Z, Šerá J, Vlková H, Šlouf M, Fortelný I, and Kruliš Z (2020) Structure Characterization and Biodegradation Rate of Poly(ε-caprolactone)/Starch Blends. Frontiers in Materials 7(June):1–14

    Google Scholar 

  32. Vroman I and Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Google Scholar 

  33. Polman EMN, Gruter GJM, Parsons JR, and Tietema A (2021) Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of The Total Environment 753:141953–141953

    Article  CAS  Google Scholar 

  34. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, and Abu Osman NA (2015) Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. Journal of Biomedical Materials Research Part A 103(7):2482–2498

    Article  CAS  Google Scholar 

  35. Lyu JS, Lee JS, and Han J (2019) Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports 9(1):1–11

    Article  CAS  Google Scholar 

  36. Díaz E, Sandonis I, and Valle MB (2014) In vitro degradation of poly(caprolactone)/nHA composites. Journal of Nanomaterials 2014

    Google Scholar 

  37. Cesur S (2017) The Effects of Additives on the Biodegradation of Polycaprolactone Composites. Journal of Polymers and the Environment 0(0):0–0

    Google Scholar 

  38. Chiellini E, Corti A, D’Antone S, and Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science (Oxford) 28(6):963–1014

    Article  CAS  Google Scholar 

  39. Wu HF, Yue LZ, Jiang SL, Lu YQ, Wu YX, and Wan ZY (2019) Biodegradation of polyvinyl alcohol by different dominant degrading bacterial strains in a baffled anaerobic bioreactor. Water Science and Technology 79(10):2005–2012

    Article  CAS  Google Scholar 

  40. Chai WL, Chow JD, Chen CC, Chuang FS, and Lu WC (2009) Evaluation of the biodegradability of polyvinyl alcohol/starch blends: A methodological comparison of environmentally friendly materials. Journal of Polymers and the Environment 17(2):71–82

    Article  CAS  Google Scholar 

  41. Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, and Fruth V (2011) Biodegradation of Poly(vinyl alcohol) and Bacterial Cellulose Composites by Aspergillus niger. Journal of Polymers and the Environment 19(1):69–79

    Article  CAS  Google Scholar 

  42. Huang D, Hu Z-D, Ding Y, Zhen Z-C, Lu B, Ji J-H, and Wang G-X (2019) Seawater degradable PVA/PCL blends with water-soluble polyvinyl alcohol as degradation accelerator. Polymer Degradation and Stability 163:195–205

    Article  CAS  Google Scholar 

  43. Alonso-López O, López-Ibáñez S, and Beiras R (2021) Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers 13(21):3742–3742

    Article  Google Scholar 

  44. Bumbudsanpharoke N, Wongphan P, Promhuad K, Leelaphiwat P, and Harnkarnsujarit N (2022) Morphology and permeability of bio-based poly(butylene adipate-co-terephthalate) (PBAT), poly(butylene succinate) (PBS) and linear low-density polyethylene (LLDPE) blend films control shelf-life of packaged bread. Food Control 132:108541–108541

    Article  CAS  Google Scholar 

  45. Fu Y, Wu G, Bian X, Zeng J, and Weng Y (2020) Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment. Molecules 25(17)

    Google Scholar 

  46. Palsikowski PA, Kuchnier CN, Pinheiro IF, and Morales AR (2018) Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment 26(1):330–341

    Article  CAS  Google Scholar 

  47. Narancic T, Verstichel S, Reddy Chaganti S, Morales-Gamez L, Kenny ST, De Wilde B, Babu Padamati R, and O’Connor KE (2018) Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environmental Science and Technology 52(18):10441–10452

    Article  CAS  Google Scholar 

  48. Kim HS, Kim HJ, Lee JW, and Choi IG (2006) Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polymer Degradation and Stability 91(5):1117–1127

    Article  CAS  Google Scholar 

  49. Puchalski M, Szparaga G, Biela T, Gutowska A, Sztajnowski S, and Krucińska I (2018) Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers 10(3):251–251

    Article  Google Scholar 

  50. Garrison TF, Murawski A, and Quirino RL (2016) Bio-Based Polymers with Potential for Biodegradability. Polymers 8(7):262

    Article  Google Scholar 

  51. Gunatillake PA and Adhikari R (2011) Biodegradable polyurethanes: Design, synthesis, properties and potential applications. Biodegradable Polymers: Processing, Degradation and Applications (January 2011):431–470

    Google Scholar 

  52. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, and Gunatillake PA (2007) Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 28(36):5407–5417

    Article  CAS  Google Scholar 

  53. Martínez-Abad A, González-Ausejo J, Lagarón JM, and Cabedo L (2016) Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polymer Degradation and Stability 132:52–61

    Article  Google Scholar 

  54. Mi HY, Jing X, Napiwocki BN, Hagerty BS, Chen G, and Turng LS (2017) Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block -polytetrahydrofuran- block -polycaprolactone copolymers for soft tissue engineering. Journal of Materials Chemistry B 5(22):4137–4151

    Article  CAS  Google Scholar 

  55. Magnin A, Hoornaert L, Pollet E, Laurichesse S, Phalip V, and Avérous L (2019) Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnology 12(3):544–555

    Article  CAS  Google Scholar 

  56. Hung KC, Tseng CS, and Hsu SH, 3D Printing of Polyurethane Biomaterials, in In Advances in Polyurethane Biomaterials. 2016, Woodhead Publishing. p. 149–170.

    Chapter  Google Scholar 

  57. Howard GT (2002) Biodegradation of polyurethane: A review. International Biodeterioration and Biodegradation 49(4):245–252

    Article  CAS  Google Scholar 

  58. Ozsagiroglu E, Iyisan B, and Guvenilir YA (2012) Biodegradation and characterization studies of different kinds of polyurethanes with several enzyme solutions. Polish Journal of Environmental Studies 21(6):1777–1782

    CAS  Google Scholar 

  59. Christenson EM, Anderson JM, and Hiltner A (2007) Biodegradation mechanisms of polyurethane elastomers. Corrosion Engineering, Science and Technology 42(4):312–323

    Article  CAS  Google Scholar 

  60. Alhanish A and Abu Ghalia M, Biobased Thermoplastic Polyurethanes and Their Capability to Biodegradation, M Jawaid, et al., Editors. 2021, Springer Singapore. p. 85–104.

    Google Scholar 

  61. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, and Jegal J (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and biosystems engineering 36(7):885–892

    Article  CAS  Google Scholar 

  62. Yang KK, Wang XL, and Wang YZ (2002) Poly(p-dioxanone) and its copolymers. Journal of Macromolecular Science - Polymer Reviews 42(3):373–398

    Article  Google Scholar 

  63. Liao J and Chen Q (2021) Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. Journal of Hazardous Materials 418(June):126329–126329

    Article  CAS  Google Scholar 

  64. Vikhareva IN, Buylova EA, Yarmuhametova GU, Aminova GK, and Mazitova AK (2021) An Overview of the Main Trends in the Creation of Biodegradable Polymer Materials. Journal of Chemistry 2021:https://doi.org/10.1155/2021/5099705

  65. Harding KG, Gounden T, and Pretorius S (2017) “Biodegradable” Plastics: A Myth of Marketing? Procedia Manufacturing 7:106–110

    Article  Google Scholar 

  66. Rai P, Mehrotra S, Priya S, Gnansounou E, and Sharma SK (2021) Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology 325(November 2020):124739–124739

    Article  Google Scholar 

  67. Haider TP, Völker C, Kramm J, Landfester K, and Wurm FR (2019) Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition 58(1):50–62

    Article  CAS  Google Scholar 

  68. RameshKumar S, Shaiju P, O’Connor KE, and P RB (2020) Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry 21:75–81

    Google Scholar 

  69. Fahim IS, Chbib H, and Mahmoud HM (2019) The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustainable Chemistry and Pharmacy 12(March):100142–100142

    Article  Google Scholar 

  70. Chan CM, Vandi L-J, Pratt S, Halley P, Richardson D, Werker A, and Laycock B (2018) Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews 58(3):444–494

    Article  CAS  Google Scholar 

  71. Kaushal J, Khatri M, and Arya SK (2021) Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini - review. Cleaner Engineering and Technology 2(October 2020):100083–100083

    Article  Google Scholar 

  72. Shrivastava A and Dondapati S (2021) Biodegradable composites based on biopolymers and natural bast fibres: A review. Materials Today: Proceedings 46(2):1420–1428

    CAS  Google Scholar 

  73. Li Z, Yang J, and Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials 8:e265

    Article  CAS  Google Scholar 

  74. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  75. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, and Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218:191–197

    Article  CAS  Google Scholar 

  76. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805–821.

    Chapter  Google Scholar 

  77. Soares JMA, da Silva Júnior ED, Oliveira de Veras B, Yara R, de Albuquerque PBS, and de Souza MP (2021) Active Biodegradable Film Based on Chitosan and Cenostigma Nordestinum’ Extracts for Use in the Food Industry. Journal of Polymers and the Environment (0123456789)

    Google Scholar 

  78. Nakajima H, Dijkstra P, and Loos K (2017) The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 9(10):523

    Article  Google Scholar 

  79. Teto AM (2021) A Review on Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin. Global Journal of Biology 10(103):10–12

    Google Scholar 

  80. Tokiwa Y and Calabia BP (2007) Biodegradability and biodegradation of polyesters. Journal of Polymers and the Environment 15(4):259–267

    Article  CAS  Google Scholar 

  81. Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, and Wang B (2003) Biodegradable Polymers: Past, Present, and Future. American Society of Agricultural and Biological Engineers 0300:1–15

    Google Scholar 

  82. Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12(5):1127

    Article  CAS  Google Scholar 

  83. Tamo AK, Doench I, Helguera AM, Hoenders D, Walther A, and Madrazo AO (2020) Biodegradation of crystalline cellulose nanofibers by means of enzyme immobilized-alginate beads and microparticles. Polymers 12(7):1–24

    Google Scholar 

  84. Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, and Lona LMF (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. European Polymer Journal 108(July):274–285

    Article  CAS  Google Scholar 

  85. Vikman M, Vartiainen J, Tsitko I, and Korhonen P (2015) Biodegradability and Compostability of Nanofibrillar Cellulose-Based Products. Journal of Polymers and the Environment 23(2):206–215

    Article  CAS  Google Scholar 

  86. Torgbo S and Sukyai P (2020) Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polymer Degradation and Stability 179:109232–109232

    Article  CAS  Google Scholar 

  87. Kean T and Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews 62(1):3–11

    Article  CAS  Google Scholar 

  88. Manek E, Darvas F, and Petroianu GA (2020) Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer’s Disease. Molecules 25(20):4866–4866

    Article  CAS  Google Scholar 

  89. Gigante V, Panariello L, Coltelli M-b, Danti S, Obisesan KA, Hadrich A, Staebler A, Chierici S, Canesi I, Lazzeri A, and Cinelli P (2021) Liquid and Solid Functional Bio-Based Coatings. Polymers 13(21):3640–3640

    Article  CAS  Google Scholar 

  90. López-García J, Lehocký M, Humpolíček P, and Sáha P (2014) HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. Journal of Functional Biomaterials 5(2):43–57

    Article  Google Scholar 

  91. Bonilla J, Paiano RB, Lourenço RV, Bittante AMQB, and Sobral PJA (2020) Biodegradability in aquatic system of thin materials based on chitosan, PBAT and HDPE polymers: Respirometric and physical-chemical analysis. International Journal of Biological Macromolecules 164:1399–1412

    Article  CAS  Google Scholar 

  92. Tabasi RY and Ajji A (2015) Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability 120:435–442

    Article  CAS  Google Scholar 

  93. Emadian SM, Onay TT, and Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Management 59:526–536

    Article  CAS  Google Scholar 

  94. Kim H-S, Kim H-J, Lee J-W, and Choi I-G (2006) Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polymer Degradation and Stability 91(5):1117–1127

    Article  CAS  Google Scholar 

  95. Salvador M, Abdulmutalib U, Gonzalez J, Kim J, Smith AA, Faulon J-L, Wei R, Zimmermann W, and Jimenez JI (2019) Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes 10(5):373

    Article  Google Scholar 

  96. Suzuki M, Tachibana Y, and Kasuya Ki (2021) Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polymer Journal 53(1):47–66

    Article  CAS  Google Scholar 

  97. Lyu JS, Lee JS and Han J (2019) Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports 9:20236

    Google Scholar 

  98. Yang HS, Yoon JS, and Kim MN (2005) Dependence of biodegradability of plastics in compost on the shape of specimens. Polymer Degradation and Stability 87(1):131–135

    Article  CAS  Google Scholar 

  99. Yang H-S, Yoon J-S, and Kim M-N (2005) Dependence of biodegradability of plastics in compost on the shape of specimens. Polymer Degradation and Stability 87(1):131–135

    Article  CAS  Google Scholar 

  100. González-Pleiter M, Tamayo-Belda M, Pulido-Reyes G, Amariei G, Leganés F, Rosal R, and Fernández-Piñas F (2019) Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environmental Science: Nano 6(5):1382–1392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atika Alhanish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alhanish, A., Ali, G.A.M. (2022). Biodegradable Polymers. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics