Abstract
Crocin is a carotenoid component found in the stigmas of the Crocus sativus plant, which is also known as saffron. In addition to being employed as a taste ingredient, pharmacological studies have revealed a number of therapeutic qualities, including antimutagenic, neuroprotective, memory, and cognition-improving properties, as well as a few other benefits for saffron. Extensive research on crocin has examined the high bioactivities of this unique water-soluble carotenoid during the last 20–25 years. The current chapter presents a comprehensive and up-to-date report on empirical research about crocin bioactivities and biological features. The pharmacologic investigation of crocins in terms of structural characteristics and pharmacokinetics is comprehensively covered in this review, which also summarizes the disease-treating mechanisms. This text also contributes to the improvement of crocin stability and its usage as a functional ingredient with therapeutic effects on numerous human body systems, which could pave the way for industrial crocin generation and metabolic engineering-based crocin-rich functional meals.
Similar content being viewed by others
Abbreviations
- AChE inhibitors:
-
Acetylcholinesterase inhibitors
- AGS:
-
Gastric adenocarcinoma
- ATC:
-
Anaplastic thyroid cancer
- Aβ1-42:
-
Amyloid beta1-42
- CDKIs:
-
Cyclin-dependent kinase inhibitors
- CDKs:
-
Cyclin-dependent kinases
- CE:
-
Cholesteryl ester
- ER:
-
Endoplasmic reticulum
- ERK:
-
Extracellular signal-regulated kinase
- FAO/WHO:
-
Food and Agriculture Organization/World Health Organization
- FOXO:
-
The forkhead box transcription factor class O
- FTC:
-
Follicular thyroid cancer
- GC:
-
Gas chromatography
- Gent-MIP:
-
Gentiobiose imprinted polymer
- GSH:
-
Glutathione peroxidase reducing activities
- HPLC:
-
High performance liquid chromatography
- IR:
-
Ischemia-reperfusion
- JAK2/STAT3:
-
Janus kinase/signal transducer and activator of transcription
- JNK:
-
C-Jun NH2-terminal kinases
- LDL:
-
Low-density lipoprotein
- LPO:
-
Lipid peroxidation
- MDA:
-
Malondialdehyde
- miRNAs:
-
MicroRNAs
- MMPs:
-
Matrix metalloproteinases
- MSC:
-
Mesenchymal stem cells
- NAC:
-
N-acetyl-l-cysteine
- NF-κB:
-
Nuclear factor kappa light chain enhancer of activated B cells
- NMDA:
-
N-methyl-D-aspartate receptor
- NO:
-
Nitric oxide
- Nrf2:
-
Nuclear factor-erythroid 2-related factor 2
- Ox-LDL:
-
Oxidatively modified low density lipoprotein
- PTC:
-
Papillary thyroid cancer
- PTPN4:
-
Protein Tyrosine Phosphatase Non-Receptor Type 4
- ROS:
-
Reactive oxygen species
- SMC:
-
Smooth muscle cells
- SOD:
-
Superoxide dismutase
- TC:
-
Thyroid cancer
- TLC:
-
Thin layer chromatography
- UPLC–MS/MS:
-
Ultra-high-performance liquid chromatography tandem mass spectrometry
References
Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res. 2000;14(3):149–52.
Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65–80.
Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: plant-based approaches for intervention. Phytother Res. 2018;32(10):1908–32.
Almodóvar P, Briskey D, Rao A, Prodanov M, Inarejos-García AM. Bioaccessibility and pharmacokinetics of a commercial saffron (Crocus sativus L.). J Evid Based Complementary Altern Med. 2020;2020:1575730.
Asai A, Nakano T, Takahashi M, Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem. 2005;53(18):7302–6.
Ashrafi M, Bathaie SZ, Abroun S, Azizian M. Effect of crocin on cell cycle regulators in N-nitroso-N-methylurea-induced breast cancer in rats. DNA Cell Biol. 2015;34(11):684–91.
Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, et al. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev. 2010;11(3):675–9.
Bathaie SZ, Sajjadi M. Comparative study on preventive effect of saffron carotenoids, crocin and crocetin, in NMU-induced breast cancer in rat. Cell J (Yakhteh). 2016;19:94–101.
Bhandari PR. Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tradit Complement Med. 2015;5(2):81–7.
Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007;100(3):1126–31.
Carmona M, Zalacain A, Pardo JE, López E, Alvarruiz A, Alonso GL. Influence of different drying and aging conditions on saffron constituents. J Agric Food Chem. 2005;53(10):3974–9.
Champalal KD, Nilakshi N, Vijay GR, Abhyankar MM. Detailed profile of Crocus sativus. Int J Pharm Bio Sci. 2011;2(1):530–40.
Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y, et al. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res. 2015;4(6):775–83.
Choi H-J, Park YS, Kim MG, Kim TK, Yoon NS, Lim YJ. Isolation and characterization of the major colorant in Gardenia fruit. Dyes Pigments. 2001;49(1):15–20.
Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res. 2007;27(1 A):357–62.
Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.
D’Alessandro AM, Mancini A, Lizzi AR, De Simone A, Marroccella CE, Gravina GL, et al. Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr Cancer. 2013;65(6):930–42.
Dar RA, Brahman PK, Khurana N, Wagay JA, Lone ZA, Ganaie MA, et al. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays. Arab J Chem. 2017;10:S1119–S28.
Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, et al. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol. 2011;187(9):4788–99.
Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, et al. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther. 2009;8(2):315–23.
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol. 2017;50(1):212–22.
Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int. 2014;2014:135048.
Finley JW, Gao S. A perspective on Crocus sativus L. (saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem. 2017;65(5):1005–20.
Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, et al. Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem. 2012;60(24):6131–8.
Ghadami MR, Pourmotabbed A. The effect of crocin on scopolamine induced spatial learning and memory deficits in rats. Physiol Pharmacol. 2009;12(4):287–95.
Godugu C, Pasari LP, Khurana A, Anchi P, Saifi MA, Bansod SP, et al. Crocin, an active constituent of Crocus sativus ameliorates cerulein induced pancreatic inflammation and oxidative stress. Phytother Res. 2020;34(4):825–35.
Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact. 2006;163(1):4–14.
Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625–37.
Hadizadeh F, Mohajeri SA, Seifi M. Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci. 2010;13(14):691–8.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
He S-Y, Qian Z-Y, Tang F-T, Wen N, Xu G-L, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005;77(8):907–21.
Hensel A, Lechtenberg M, Schepmann D, Niehues M, Wünsch B, editors. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma-1 receptors. Planta medica, New York. 2008.
Hirota S, Takahama U. Starch can inhibit nitrite-dependent oxidation of crocin in gastric lumen increasing bioavailability of carotenoids. Food Sci Technol Res. 2013;19(6):1121–6.
Hoshyar R, Bathaie SZ, M. S. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol. 2013;32(2):50–7.
Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photochem Photobiol B Biol. 2016;159:237–42.
Hosseinzadeh H, Jahanian Z. Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res. 2010;24(5):726–30.
Hosseinzadeh H, Nassiri-Asl M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res. 2013;27(4):475–83.
Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci. 2005;8(3):387–93.
Hosseinzadeh H, Shariaty VM, Sameni AK, Vahabzadeh M. Acute and sub-acute toxicity of crocin, a constituent of Crocus sativus L. (saffron), in mice and rats. Pharmacology. 2010;2:943–51.
Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24(7):990–4.
Kalalinia F, Ghasim H, Amel Farzad S, Pishavar E, Ramezani M, Hashemi M. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci. 2018;208:262–7.
Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.
Khorasanchi Z, Shafiee M, Kermanshahi F, Khazaei M, Ryzhikov M, Parizadeh MR, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine. 2018a;43:21–7.
Khorasanchi Z, Shafiee M, Kermanshahi F, Khazaei M, Ryzhikov M, Parizadeh MR, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine. 2018b;43:21–7.
Koulakiotis NS, Purhonen P, Gikas E, Hebert H, Tsarbopoulos A. Crocus-derived compounds alter the aggregation pathway of Alzheimer’s disease – associated beta amyloid protein. Sci Rep. 2020;10(1):18150.
Lage M, Cantrell CL. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic. 2009;121(3):366–73.
Lee I-A, Lee JH, Baek N-I, Kim D-H. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull. 2005;28(11):2106–10.
Li N, Lin G, Kwan Y-W, Min Z-D. Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A. 1999;849(2):349–55.
Li S, Shao Q, Lu Z, Duan C, Yi H, Su L. Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques. Spectrochim Acta A Mol Biomol Spectrosc. 2018;190:283–9.
Li D, Wu G, Zhang H, Qi X. Preparation of crocin nanocomplex in order to increase its physical stability. Food Hydrocoll. 2021;120:106415.
Liakopoulou-Kyriakides M, Kyriakidis DA. Croscus sativus-biological active constituents. In: Atta ur R, editor. Studies in natural products chemistry. 26: Elsevier; 2002. p. 293–312.
Liu J, Qian Z. Effects of crocin on cholestane-3beta-5alpha-6beta-triol-induced apoptosis and related gene expression of cultured endothelial cells. J China Pharm Univ. 2005;36(3):254.
Liu T, Yu S, Xu Z, Tan J, Wang B, Liu Y-G, et al. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J. 2020;18:3278–86.
Lu P, Lin H, Gu Y, Li L, Guo H, Wang F, et al. Antitumor effects of crocin on human breast cancer cells. Int J Clin Exp Med. 2015;8(11):20316–22.
Ma Y, Qin H, Cui Y. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun. 2013;441(4):958–63.
Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem. 2006;287(1):127–35.
Magesh V, DurgaBhavani K, Senthilnathan P, Rajendran P, Sakthisekaran D. In vivo protective effect of crocetin on benzo(a)pyrene-induced lung cancer in Swiss albino mice. Phytother Res. 2009;23(4):533–9.
Mohajeri SA, Hosseinzadeh H, Keyhanfar F, Aghamohammadian J. Extraction of crocin from saffron (Crocus sativus) using molecularly imprinted polymer solid-phase extraction. J Sep Sci. 2010;33(15):2302–9.
Mohamadpour AH, Ayati Z, Parizadeh M-R, Rajbai O, Hosseinzadeh H. Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci. 2013;16(1):39–46.
Mousavi SZ, Bathaie SZ. Historical uses of saffron: identifying potential new avenues for modern research. Avicenna J Phytomed. 2011;1(2):57–66.
Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol. 2011;49(10):1039–45.
Nafissi N, Khayamzadeh M, Zeinali Z, Pazooki D, Hosseini M, Akbari ME. Epidemiology and histopathology of breast cancer in Iran versus other middle eastern countries. Middle East J Cancer. 2018;9(3):243–51.
Nasimian A, Farzaneh P, Tamanoi F, Bathaie SZ. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: the role of FOXO3a, PTEN and AKT signaling. Biochem Pharmacol. 2020;177:113999.
Nasrpour S, Yousefi G, Niakosari M, Aminlari M. Nanoencapsulation of saffron crocin into chitosan/alginate interpolyelectrolyte complexes for oral delivery: a Taguchi approach to design optimization. J Food Sci. 2022;87(3):1148–60.
Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H. Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett. 2004;362(1):61–4.
Orfanou O, Tsimidou M. Evaluation of the colouring strength of saffron spice by UV – vis spectrometry. Food Chem. 1996;57(3):463–9.
Pham TQ, Cormier F, Farnworth E, Van Tong H, Van Calsteren MR. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem. 2000;48(5):1455–61.
Pitsikas N, Zisopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res. 2007;183(2):141–6.
Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int J Biol Macromol. 2015;79:423–32.
Rahaiee S, Hashemi M, Shojaosadati SA, Moini S, Razavi SH. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol. 2017;99:401–8.
Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med. 2013;79(6):447–51.
Rezaee R, Mahmoudi M, Abnous K, Rabe SZT, Tabasi N, Hashemzaei M, et al. Cytotoxic effects of crocin on MOLT-4 human leukemia cells. J Complement Integr Med. 2013;10(1):105–12.
Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, et al. Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food. 2006;9(2):246–53.
Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr. 2007;157(13):315.
Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol. 2006;543(1):116–22.
Soeda S, Ochiai T, Tanaka H, Shoyama Y, Shimeno H. Prevention of ischemic neuron death by a saffron’s carotenoid pigment crocin and its mechanism of action. In: M. Coleman, R. (eds) Focus on Neurochemistry Research. 2005, Nova science, New York.
Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H, et al. Pharmacological activities of crocin in saffron. J Nat Med. 2007;61(2):102–11.
Song Y-n, Wang Y, Zheng Y-h, Liu T-l, Zhang C. Crocins: a comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia. 2021;153:104969.
Speranza G, Dad A, Span G, Manitto P, Monti D, Gramatica P. 13-cis-Crocin: a new crocinoid of saffron. Gazz Chim Ital. 1984;114:189–92.
Sugiura M, Shoyama Y, Saito H, Nishiyama N. Crocin improves the ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks. Proc Jpn Acad B. 1995;71(10):319–24.
Sun Y, Xu HJ, Zhao YX, Wang LZ, Sun LR, Wang Z, et al. Crocin exhibits antitumor effects on human leukemia HL-60 cells in vitro and in vivo. Evid Based Complement Alternat Med. 2013;2013:690164.
Tang Y, Yang H, Yu J, Li Z, Xu Q, Ding B, et al. Crocin induces ROS-mediated papillary thyroid cancer cell apoptosis by modulating the miR-34a-5p/PTPN4 axis in vitro. Toxicol Appl Pharmacol. 2022;437:115892.
Tarantilis PA, Polissiou MG. Isolation and identification of the aroma components from saffron (Crocus sativus). J Agric Food Chem. 1997;45(2):459–62.
Teppo HR, Soini Y, Karihtala P. Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxidative Med Cell Longev. 2017;2017:1485283.
Umigai N, Murakami K, Ulit MV, Antonio LS, Shirotori M, Morikawa H, et al. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine. 2011;18:575–8.
Wallin AK, Wattmo C, Minthon L. Galantamine treatment in Alzheimer’s disease: response and long-term outcome in a routine clinical setting. Neuropsychiatr Dis Treat. 2011;7:565–76.
Wang S-C, Tseng T-Y, Huang C-M, Tsai T-H. Gardenia herbal active constituents: applicable separation procedures. J Chromatogr B. 2004;812(1):193–202.
Wang X, Yuan B, Cheng B, Liu Y, Zhang B, Wang X, et al. Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway. Shock. 2019a;51(1):123–30.
Wang W, He P, Zhao D, Ye L, Dai L, Zhang X, et al. Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Factories. 2019b;18(1):120.
Williams CD. Antioxidants and prevention of gastrointestinal cancers. Curr Opin Gastroenterol. 2013;29(2):195–200.
Xi L, Qian Z, Du P, Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine. 2007;14(9):633–6.
Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–99.
Xu G, Gong Z, Yu W, Gao L, He S, Qian Z. Increased expression ratio of Bcl-2/Bax is associated with crocin-mediated apoptosis in bovine aortic endothelial cells. Basic Clin Pharmacol Toxicol. 2007;100(1):31–5.
Yao C, Liu BB, Qian XD, Li LQ, Cao HB, Guo QS, et al. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. Onco Targets Ther. 2018;11:2017–28.
Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H. Protective effect of crocin against mitochondrial damage and memory deficit induced by beta-amyloid in the hippocampus of rats. Iran J Pharm Res. 2021;20(2):79–94.
Zareena AV, Variyar PS, Gholap AS, Bongirwar DR. Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). J Agric Food Chem. 2001;49(2):687–91.
Zhang R, Qian ZY, Han XY, Chen Z, Yan JL, Hamid A. Comparison of the effects of crocetin and crocin on myocardial injury in rats. Chin J Nat Med. 2009;7(3):223–7.
Zhang Y, LiuL JX, Lin L, Li Q. Pharmacokinetics of crocin-1 after oral administration in rats. J Chin Pharm Sci. 2012;47:136–40.
Zhang Y, Fei F, Zhen L, Zhu X, Wang J, Li S, et al. Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. J Chromatogr B. 2017;1044–1045:1–7.
Zhang A, Shen Y, Cen M, Hong X, Shao Q, Chen Y, et al. Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins. Ind Crop Prod. 2019;133:111–7.
Zhang Y, Zhu M, Krishna Mohan S, Hao Z. Crocin treatment promotes the oxidative stress and apoptosis in human thyroid cancer cells FTC-133 through the inhibition of STAT/JAK signaling pathway. J Biochem Mol Toxicol. 2021;35(1):e22608.
Zou P, Xia Y, Ji J, Chen W, Zhang J, Chen X, et al. Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer. Cancer Lett. 2016;375(1):114–26.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this entry
Cite this entry
Karami, Z., Jafari, S.M., Duangmal, K. (2023). Crocins. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_57-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-81404-5_57-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81404-5
Online ISBN: 978-3-030-81404-5
eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences