Skip to main content

Hydroxybenzoic Acids

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients
  • 80 Accesses

Abstract

Nature generously offers a variety of sources like beverage crops, fruits, and vegetables rich in hydroxybenzoic acids compounds with excellent biochemical and antioxidant capabilities. As a group of bioeffective compounds, hydroxybenzoic acids are a prominent kind of phenolic acids. Hydroxybenzoic acids are the major aromatic secondary metabolites that impart food with typical organoleptic characteristics and link to many health benefits. Due to enormous dietary health benefits of hydroxybenzoic acids such as anti-inflammatory, antioxidant, anti-allergenic, immunoregulatory, antimicrobial, antiatherogenic, antithrombotic, antidiabetic, anticancer processes, and cardioprotective capabilities, they are attracting an ever-growing awareness in food technology, and extensive technical like medical, cosmetic, and pharmaceutical industries. It is anticipated that the advancement of hydroxybenzoic acids in functional foods may result in reversing some common illnesses such as inflammation, nervous system upsets, cerebrovascular or cardiovascular illnesses, and diabetes.

This chapter presents an overview of various aspects related to hydroxybenzoic acids (including salicylic acid, p-hydroxybenzoic acid, protocatechuic acid, gentisic acid, 3,5-dihydroxybenzoic acid, pyrocatechuic acid, vanillic acid, syringic acid, gallic acid, and ellagic acid) and the importance of these hydroxybenzoic acids is emphasized, followed by details on chemistry, structure, functionality, safety and toxicity, oral delivery, and their applications in functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abedi F, Razavi BM, Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res. 2020;34(4):729–41.

    Article  PubMed  CAS  Google Scholar 

  • Ahameethunisa AR, Hopper W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Complement Altern Med. 2010;10(6):1–6. https://doi.org/10.1186/1472-6882-10-6.

    Article  Google Scholar 

  • Alfei S, Marengo B, Zuccari G. Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins? Antioxidants. 2020;9(8):707.

    Article  PubMed Central  CAS  Google Scholar 

  • Altinoz MA, Elmaci I, Cengiz S, Emekli-Alturfan E, Ozpinar A. From epidemiology to treatment: Aspirin's prevention of brain and breast-cancer and cardioprotection may associate with its metabolite gentisic acid. Chem Biol Interact. 2018;291:29–39.

    Article  PubMed  CAS  Google Scholar 

  • Ausina P, Branco JR, Demaria TM, Esteves AM, Leandro JGB, Ochioni AC, et al. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci Rep. 2020;10:19617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai F, Fang L, Hu H, Yang Y, Feng X, Sun D. Vanillic acid mitigates the ovalbumin (OVA)-induced asthma in rat model through prevention of airway inflammation. Biosci Biotechnol Biochem. 2019;83(3):531–7.

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X, et al. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985.

    Article  PubMed  CAS  Google Scholar 

  • Baradaran Rahimi V, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: evidence from cellular, animal, and clinical studies. Phytother Res. 2020;34(4):685–720.

    Article  PubMed  Google Scholar 

  • Blanca-Lopez N, Perez-Alzate D, Canto G, Blanca M. Practical approach to the treatment of NSAID hypersensitivity. Expert Rev Clin Immunol. 2017;13(11):1017–27.

    Article  PubMed  CAS  Google Scholar 

  • Chen S-Y, Guo L-Y, Bai J-G, Zhang Y, Zhang L, Wang Z, et al. Biodegradation of p-hydroxybenzoic acid in soil by pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil. Plant Soil. 2015;389(1):197–210.

    Article  CAS  Google Scholar 

  • Christiansen M, Grove EL, Hvas A-M, editors. Contemporary clinical use of aspirin: mechanisms of action, current concepts, unresolved questions, and future perspectives. Seminars in Thrombosis and Hemostasis; 2021. Thieme Medical Publishers, Inc.

    Google Scholar 

  • Chuang H-W, Wei I-H, Lin F-Y, Li C-T, Chen K-T, Tsai M-H, et al. Roles of Akt and ERK in mTOR-dependent antidepressant effects of Vanillic acid. ACS omega. 2020;5(7):3709–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha J, Campestrini F, Calixto J, Scremin A, Paulino N. The mechanism of gentisic acid-induced relaxation of the Guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors. Braz J Med Biol Res. 2001;34(3):381–8.

    Article  PubMed  CAS  Google Scholar 

  • Dachineni R, Kumar DR, Callegari E, Kesharwani SS, Sankaranarayanan R, Seefeldt T, et al. Salicylic acid metabolites and derivatives inhibit CDK activity: novel insights into aspirin's chemopreventive effects against colorectal cancer. Int J Oncol. 2017;51(6):1661–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Nunzio M, Valli V, Tomás-Cobos L, Tomás-Chisbert T, Murgui-Bosch L, Danesi F, et al. Is cytotoxicity a determinant of the different in vitro and in vivo effects of bioactives? BMC Complement Altern Med. 2017;17:453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dikmen DY, Okcay Y, Arslan R, Bektas N. Cannabinoid system involves in the analgesic effect of protocatechuic acid. DARU J Pharmaceut Sci. 2019;27(2):605–12.

    Article  CAS  Google Scholar 

  • Evtyugin DD, Magina S, Evtuguin DV. Recent advances in the production and applications of ellagic acid and its derivatives. A review. Molecules. 2020;25(12):2745.

    Article  PubMed Central  CAS  Google Scholar 

  • Gheena S, Ezhilarasan D. Syringic acid triggers reactive oxygen species–mediated cytotoxicity in HepG2 cells. Hum Exp Toxicol. 2019;38(6):694–702.

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Wang R, Wang D, Wang S, Zhou J, Chai Z, et al. Deliver anti-PD-L1 into brain by p-hydroxybenzoic acid to enhance immunotherapeutic effect for glioblastoma. J Control Release. 2020;320:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Hill JA, Annan RS, Biemann K. Matrix-assisted laser desorption ionization with a magnetic mass spectrometer. Rapid Commun Mass Spectrom. 1991;5(9):395–9.

    Article  PubMed  CAS  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant. 2007;51(3):480–7.

    Article  Google Scholar 

  • Hosoi J, Abe E, Suda T, Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1α, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 1985;45(4):1474–8.

    PubMed  CAS  Google Scholar 

  • Huang Y, Zhou Z, Yang W, Gong Z, Li Y, Chen S, et al. Comparative pharmacokinetics of gallic acid, protocatechuic acid, and quercitrin in normal and pyelonephritis rats after oral administration of a polygonum capitatum extract. Molecules. 2019;24(21):3873.

    Article  PubMed Central  CAS  Google Scholar 

  • Hubková B, Veliká B, Birková A, Guzy J, Mareková M. Hydroxybenzoic acids and their derivatives as peroxynitrite scavengers. Free Radic Biol Med. 2014;75:S33–S4.

    Article  PubMed  Google Scholar 

  • Ibitoye OB, Ajiboye TO. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch Physiol Biochem. 2018;124(5):410–7.

    Article  PubMed  CAS  Google Scholar 

  • Ichwan M, Walker TL, Nicola Z, Ludwig-Müller J, Böttcher C, Overall RW, et al. Apple peel and flesh contain pro-neurogenic compounds. Stem Cell Rep. 2021;16(3):548–65.

    Article  CAS  Google Scholar 

  • Jiang X, Zuo S, Ye L, Hong W. Nano-fumed silica as a novel pollutant that inhibits the algicidal effect of p-hydroxybenzoic acid on Microcystis aeruginosa. Environ Technol. 2019;40(6):693–700.

    Article  PubMed  CAS  Google Scholar 

  • John CM, Arockiasamy S. Syringic acid (4-hydroxy-3, 5-dimethoxybenzoic acid) inhibits adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. Nat Prod Res. 2020;34(23):3432–6.

    Article  PubMed  CAS  Google Scholar 

  • Jones PS, Thigpen D, Morrison JL, Richardson AP. P-Hydroxybenzoic acid esters as preservatives III.: the physiological disposition of p-Hydroxybenzoic acid and its esters. J Am Pharmaceut Assoc (Scientific ed). 1956;45(4):268–73.

    Article  CAS  Google Scholar 

  • Joshi R, Gangabhagirathi R, Venu S, Adhikari S, Mukherjee T. Antioxidant activity and free radical scavenging reactions of gentisic acid: in-vitro and pulse radiolysis studies. Free Radic Res. 2012;46(1):11–20.

    Article  PubMed  Google Scholar 

  • Ju D-T, Kuo W-W, Ho T-J, Paul CR, Kuo C-H, Viswanadha VP, et al. Protocatechuic acid from Alpinia oxyphylla induces Schwann cell migration via ERK1/2, JNK and p38 activation. Am J Chin Med. 2015;43(04):653–65.

    Article  PubMed  CAS  Google Scholar 

  • Jung Y, Park J, Kim HL, Sim JE, Youn DH, Kang J, et al. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J. 2018;32(3):1388–402.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink BH, Azouz HJ, Aldalati AM, AlTinawi BM, Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr J. 2014;13(63):1–10. https://doi.org/10.1186/1475-2891-13-63.

    Article  CAS  Google Scholar 

  • Kang J, Liu L, Liu M, Wu X, Li J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control. 2018;94:147–54.

    Article  CAS  Google Scholar 

  • Kim H, Kim SY, Sim GY, Ahn J-H. Synthesis of 4-hydroxybenzoic acid derivatives in Escherichia coli. J Agric Food Chem. 2020;68(36):9743–9.

    Article  PubMed  CAS  Google Scholar 

  • Kiokias S, Proestos C, Oreopoulou V. Phenolic acids of plant origin – a review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods. 2020;9(4):534.

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar A, Kumar D, Kumari K, Mkhize Z, Seru LK, Bahadur I, et al. Metal-ligand complex formation between ferrous or ferric ion with syringic acid and their anti-oxidant and anti-microbial activities: DFT and molecular docking approach. J Mol Liq. 2021;322:114872.

    Article  CAS  Google Scholar 

  • Lemini C, Silva G, Timossi C, Luque D, Valverde A, González-Martınez M, et al. Estrogenic effects ofp-Hydroxybenzoic acid in CD1 mice. Environ Res. 1997;75(2):130–4.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Kuei C, Zhu J, Yu J, Zhang L, Shih A, et al. 3, 5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther. 2012;341(3):794–801.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Sun C, Li W, Adu-Frimpong M, Wang Q, Yu J, et al. Preparation and characterization of Syringic acid–loaded TPGS liposome with enhanced oral bioavailability and in vivo antioxidant efficiency. AAPS PharmSciTech. 2019;20:98.

    Article  PubMed  CAS  Google Scholar 

  • Madunić J, Horvat L, Majstorović I, JodÅ‚owska I, Antica M, Matulić M. Sodium salicylate inhibits urokinase activity in MDA MB-231 breast cancer cells. Clin Breast Cancer. 2017;17(8):629–37.

    Article  PubMed  Google Scholar 

  • McMahon TF, Stefanski SA, Wilson RE, Blair PC, Clark A-M, Birnbaum LS. Comparative acute nephrotoxicity of salicylic acid, 2, 3-dihydroxybenzoic acid, and 2, 5-dihydroxybenzoic acid in young and middle aged Fischer 344 rats. Toxicology. 1991;66(3):297–311.

    Article  PubMed  CAS  Google Scholar 

  • Mirza AC, Panchal SS. Safety assessment of vanillic acid: subacute oral toxicity studies in wistar rats. Turkish J Pharmaceut Sci. 2020;17(4):432.

    Article  CAS  Google Scholar 

  • Morin A, Poitras M, Plamondon H. Global cerebral ischemia in adolescent male long Evans rats: effects of Vanillic acid supplementation on stress response, emotionality, and visuospatial memory. Behav Brain Res. 2021;412:113403.

    Article  PubMed  Google Scholar 

  • Ohno Y, Oyama A, Kaneko H, Egawa T, Yokoyama S, Sugiura T, et al. Lactate increases myotube diameter via activation of MEK/ERK pathway in C2C12 cells. Acta Physiol. 2018;223(2):e13042.

    Article  CAS  Google Scholar 

  • Ou C, Wang Q, Wei X, Liu M, Liu X, He C. Pro-apoptosis effects of protocatechuic acid in the early stage of infectious bursal disease virus infection. Microb Pathog. 2018;124:216–22.

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Kim JY, Cheon YH, Baek JM, Ahn SJ, Yoon KH, et al. Protocatechuic acid attenuates osteoclastogenesis by downregulating JNK/c-Fos/NFATc1 signaling and prevents inflammatory bone loss in mice. Phytother Res. 2016;30(4):604–12.

    Article  PubMed  CAS  Google Scholar 

  • Peiffer D, Wang L, Zimmerman N, Ransom B, Carmella S, Kuo C, et al. Dietary consumption of black raspberries or their anthocyanin constituents alters innate immune cell trafficking in esophageal cancer. Cancer Immunol Res. 2016;4:72–82.

    Article  PubMed  CAS  Google Scholar 

  • Rahnasto-Rilla M, Järvenpää J, Huovinen M, Schroderus A-M, Ihantola E-L, Küblbeck J, et al. Effects of galloflavin and ellagic acid on sirtuin 6 and its anti-tumorigenic activities. Biomed Pharmacother. 2020;131:110701.

    Article  PubMed  CAS  Google Scholar 

  • Rashmi HB, Negi PS. Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int. 2020;136:109298.

    Article  PubMed  CAS  Google Scholar 

  • Reyes AWB, Arayan LT, Hop HT, Huy TXN, Vu SH, Min W, et al. Effects of gallic acid on signaling kinases in murine macrophages and immune modulation against Brucella abortus 544 infection in mice. Microb Pathog. 2018;119:255–9.

    Article  PubMed  CAS  Google Scholar 

  • Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51(10):2866–87.

    Article  PubMed  CAS  Google Scholar 

  • Ryu JY, Kang HR, Cho SK. Changes over the fermentation period in phenolic compounds and antioxidant and anticancer activities of blueberries fermented by Lactobacillus plantarum. J Food Sci. 2019;84(8):2347–56.

    Article  PubMed  CAS  Google Scholar 

  • Salau VF, Erukainure OL, Ibeji CU, Olasehinde TA, Koorbanally NA, Islam M. Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe2+−induced brain tissues damage. Metab Brain Dis. 2020;35(5):727–38.

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan R, Valiveti CK, Dachineni R, Kumar DR, Lick T, Bhat GJ. Aspirin metabolites 2, 3-DHBA and 2, 5-DHBA inhibit cancer cell growth: implications in colorectal cancer prevention. Mol Med Rep. 2020;21(1):20–34.

    PubMed  CAS  Google Scholar 

  • Shahzad S, Mateen S, Naeem SS, Akhtar K, Rizvi W, Moin S. Syringic acid protects from isoproterenol induced cardiotoxicity in rats. Eur J Pharmacol. 2019;849:135–45.

    Article  PubMed  CAS  Google Scholar 

  • Shaik MM, Kowshik M. Ellagic acid containing collagen-chitosan scaffolds as potential antioxidative bio-materials for tissue engineering applications. Int J Polym Mater Polym Biomater. 2019;68(4):208–15.

    Article  CAS  Google Scholar 

  • Sharma S, Khan N, Sultana S. Modulatory effect of gentisic acid on the augmentation of biochemical events of tumor promotion stage by benzoyl peroxide and ultraviolet radiation in Swiss albino mice. Toxicol Lett. 2004;153(3):293–302.

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Khurana N, Muthuraman A, Utreja P. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson's disease rat model. Eur J Pharmacol. 2021;903:174112.

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Cho SH, Park D, Jung E. Anti-skin aging properties of protocatechuic acid in vitro and in vivo. J Cosmet Dermatol. 2020;19(4):977–84.

    Article  PubMed  Google Scholar 

  • Song J, He Y, Luo C, Feng B, Ran F, Xu H, et al. New progress in the pharmacology of protocatechuic acid: a compound ingested in daily foods and herbs frequently and heavily. Pharmacol Res. 2020;161:105109.

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Kee HJ, Ryu Y, Choi SY, Kim GR, Kim H-S, et al. Gentisic acid prevents the transition from pressure overload-induced cardiac hypertrophy to heart failure. Sci Rep. 2019;9:3018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C, Li W, Zhang H, Adu-Frimpong M, Ma P, Zhu Y, et al. Improved oral bioavailability and hypolipidemic effect of syringic acid via a self-microemulsifying drug delivery system. AAPS PharmSciTech. 2021;22:45.

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Barberán FA, Clifford MN. Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. J Sci Food Agric. 2000;80(7):1024–32.

    Article  Google Scholar 

  • Wang L, Sweet DH. Potential for food–drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Biochem Pharmacol. 2012;84(8):1088–95.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Huo Y, Zhao L, Lu F, Wang O, Yang X, et al. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression. Mol Nutr Food Res. 2016;60(7):1564–77.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H-H, Gao Q-G, Zhang Y, Wong K-C, Dai Y, Yao X-S, et al. Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway. J Steroid Biochem Mol Biol. 2014;144:382–91.

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Mehrotra G, Dutta P. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem. 2021;334:127605.

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Zhang L, Liao P, Xiao Z, Zhang F, Sindaye D, et al. Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action. Front Immunol. 2020;11:2231.

    Google Scholar 

  • Zhang X-K, He F, Zhang B, Reeves MJ, Liu Y, Zhao X, et al. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Res Int. 2018;106:568–79.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Liu X, Yang H, Zhao R, Liu C, Zhang R, et al. Comparative pharmacokinetic study on phenolic acids and flavonoids in spinal cord injury rats plasma by UPLC-MS/MS after single and combined oral administration of danshen and huangqin extract. J Pharm Biomed Anal. 2019a;172:103–12.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pu C, Tang W, Wang S, Sun Q. Gallic acid liposomes decorated with lactoferrin: characterization, in vitro digestion and antibacterial activity. Food Chem. 2019b;293:315–22.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Curtis N. The effect of aspirin on antibiotic susceptibility. Expert Opin Ther Targets. 2018;22(11):967–72.

    Article  PubMed  CAS  Google Scholar 

  • Zitta K, Meybohm P, Bein B, Huang Y, Heinrich C, Scholz J, et al. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: influence of oxygen and salicylic acid concentration. Exp Cell Res. 2012;318(7):828–34.

    Article  PubMed  CAS  Google Scholar 

  • Zuo S, Yang H, Jiang X, Ma Y. Magnetic Fe3O4 nanoparticles enhance cyanobactericidal effect of allelopathic p-hydroxybenzoic acid on Microcystis aeruginosa by enhancing hydroxyl radical production. Sci Total Environ. 2021;770:145201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbao Zha .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gong, D., Zha, Z. (2022). Hydroxybenzoic Acids. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics