Skip to main content

Chalcones

Extraction Methods, Food Industry Applications

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Chalcones are plant-derived polyphenols that act as precursors for flavonoids and isoflavonoids, commonly found in vegetables, fruits, teas, and spices. These compounds are characterized by their yellow or orange color, which originates from a molecular structure consisting of two aromatic rings connected by a three-carbon chain, a conjugated carbonyl group, and a double bond. Chalcones exhibit a wide range of biological activities, making them promising candidates for various clinical applications, such as antioxidants, antimicrobials, anticancer agents, anti-inflammatory agents, antihypertensive agents, antidiabetic agents, anti-obesity agents, neuroprotective agents, and hepatoprotective agents. Numerous animal and human clinical studies have demonstrated the high food safety profile of chalcones, as they do not exhibit cytotoxic effects on normal cells. The nutritional value, safety, and potential of chalcones as lead compounds for developing alternative medications to treat various disorders offer significant benefits. This chapter aims to provide a comprehensive overview of natural chalcones found in food sources, their biological activities, extraction methods, potential applications in the food industry, and their prospective use as alternative medications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu-Dief AM, Nassar IF, Elsayed WH. Magnetic NiFe2O4 nanoparticles: efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity. Appl Organomet Chem. 2016;30(11):917–23.

    Article  CAS  Google Scholar 

  • Alarcón J, Alderete J, Escobar C, et al. Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatal Biotransform. 2013;31(4):160–7.

    Article  Google Scholar 

  • Alberton EH, Damazio RG, Cazarolli LH, et al. Influence of chalcone analogues on serum glucose levels in hyperglycemic rats. Chem Biol Interact. 2008;171:355–62. https://doi.org/10.1016/j.cbi.2007.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Khan M, Zaman K, Wadood A, et al. Chalcones: as potent α-amylase enzyme inhibitors; synthesis, in vitro, and in silico studies. Med Chem. 2021;17(8):903–12. https://doi.org/10.2174/1573406416666200611103039.

    Article  CAS  PubMed  Google Scholar 

  • Alia M, Ramos S, Mateos R, et al. New chalcones as antioxidants and nitric oxide production inhibitors. Free Radic Res. 2003;37(6):637–45.

    Google Scholar 

  • An W, Yang Y, Ao Y. Metallothionein mediates cardioprotection of isoliquiritigenin against ischemia-reperfusion through JAK2/STAT3 activation. Acta Pharmacol Sin. 2006;27:1431–7. https://doi.org/10.1111/j.1745-7254.2006.00419.

    Article  CAS  PubMed  Google Scholar 

  • Assolini JP, da Silva TP, da Silva Bortoleti BT, et al. 4-nitrochalcone exerts leishmanicidal effect on L. amazonensis promastigotes and intracellular amastigotes, and the 4-nitrochalcone encapsulation in beeswax copaiba oil nanoparticles reduces macrophages cytotoxicity. Eur J Pharmacol. 2020;884:173392.

    Article  CAS  PubMed  Google Scholar 

  • Bazzaro M, Anchoori RK, Mudiam MK, et al. α,β-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J Med Chem. 2011;54(2):449–56. https://doi.org/10.1021/jm100589p.

    Article  CAS  PubMed  Google Scholar 

  • Becerril R, Nerín C, Silva F. Active bilayer films based on chitosan and a new polyester obtained from naturally occurring phenolic compounds. Food Hydrocoll. 2018;79:473–83.

    Google Scholar 

  • Birari RB, Gupta S, Mohan CG, et al. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomedicine. 2011;18:795–801. https://doi.org/10.1016/j.phymed.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Braun RU, Ansorge M, Müller TJJ. Coupling-isomerization synthesis of chalcones. Chem Eur J. 2006;12(35):9081–94. https://doi.org/10.1002/chem.200600530.

    Article  CAS  PubMed  Google Scholar 

  • Cabrera M, Lavaggi ML, Croce F, et al. Identification of chalcones as in vivo liver monofunctional phase II enzymes inducers. Bioorg Med Chem. 2010;18(14):5391–9. https://doi.org/10.1016/j.bmc.2010.05.033.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Mohamad Razali UH, Saikim FH, et al. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods. 2021;10(3):689. https://doi.org/10.3390/foods10030689.

  • Chen M, Theander TG, Christensen SB, et al. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–5. https://doi.org/10.1128/AAC.38.7.1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Zhai L, Christensen SB, et al. Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother. 2001;45:2023–9. https://doi.org/10.1128/AAC.45.7.2023-2029.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-Y, Chien Y-C, Chang C-C et al. (2008) Cardamonin-rich plants and compositions thereof for inhibiting nitric oxide production. US Patent US20080075789A1

    Google Scholar 

  • Chen X, Sun R, Hu J, Mo Z, et al. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oncol Rep. 2016;36(2):1172–8.

    Google Scholar 

  • Choommongkol V, Punturee K, Klumphu P, et al. Microwave-assisted extraction of anticancer flavonoid, 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethyl chalcone (DMC), rich extract from Syzygium nervosum fruits. Molecules. 2022;27(4):1397. https://doi.org/10.3390/molecules27041397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrêa MJ, Nunes FM, Bitencourt HR, et al. Biotransformation of chalcones by the endophytic fungus Aspergillus flavus isolated from Paspalum maritimum trin. J Braz Chem Soc. 2011;22:1333–8.

    Article  Google Scholar 

  • Crespy V, Morand C, Besson C, et al. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J Nutr. 2001;131:2109–14. https://doi.org/10.1093/jn/131.8.2109.

    Article  CAS  PubMed  Google Scholar 

  • Dao TTH, Linthorst HJM, Verpoorte R. Chalcone synthase and its functions in plant resistance. Phytochem Rev. 2011a;10:397–412. https://doi.org/10.1007/s11101-011-9211-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dao TT, Nguyen PH, Lee HS, et al. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett. 2011b;21:294–8. https://doi.org/10.1016/j.bmcl.2010.11.016.

    Article  CAS  PubMed  Google Scholar 

  • Enaru B, Drețcanu G, Pop TD, et al. Anthocyanins: Factors affecting their stability and degradation. Antioxidants. 2021;10(12):1967. https://doi.org/10.3390/antiox10121967.

  • Detsi A, Majdalani M, Kontogiorgis CA, et al. Natural and synthetic 2′-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg Med Chem. 2009;17(23):8073–85. https://doi.org/10.1016/j.bmc.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  • Elrod SM. Xanthohumol and the medicinal benefits of beer. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols: mechanisms of action in human health and disease. 2nd ed. Academic; 2018. p. 19–32.

    Chapter  Google Scholar 

  • Enoki T, Ohnogi H, Nagamine K, et al. Antidiabetic activities of chalcones isolated from a Japanese Herb, Angelica keiskei. J Agric Food Chem. 2007;55(15):6013–7. https://doi.org/10.1021/jf070720q.

  • Feng K, Wen P, Yang H, et al. A novel antimicrobial film based on chitosan/pullulan dual layers for controlled release of antimicrobial agent. Carbohydr Polym. 2020;247:116682.

    Google Scholar 

  • Ferrer R, Lobo G, Gamboa N, et al. Synthesis of [(7-chloroquinolin-4-yl)amino]chalcones: potential antimalarial and anticancer agents. Sci Pharm. 2009;77(4):725–41. https://doi.org/10.3797/scipharm.0905-07.

    Article  CAS  Google Scholar 

  • Ferreyra Falcone ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.

    Google Scholar 

  • Fringuelli F, Pizzo F, Vittoriani C, et al. Polystyryl-supported TBD as an efficient and reusable catalyst under solvent-free conditions. Chem Commun. 2004;23:2756–7. https://doi.org/10.1039/b409808k.

    Article  CAS  Google Scholar 

  • Fu Y, Hsieh T, Guo J, et al. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2004;322:263–70. https://doi.org/10.1016/j.bbrc.2004.07.094.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Chen J, Li Y-J, et al. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res. 2013a;21(10):989–94.

    Article  Google Scholar 

  • Fu Y, Chen J, Li Y-J, Zheng Y-F, Li P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013b;141(2):1063–71.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Hsieh TC, Guo J, et al. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2013c;322(1):263–70.

    Article  Google Scholar 

  • Gattuso G, Barreca D, Gargiulli C, et al. Flavonoid composition of citrus juices. Molecules. 2007;12(8):1641–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhäuser C. Beer constituents as potential cancer chemopreventive agents. Eur J Cancer. 2005;41(13):1941–54.

    Article  PubMed  Google Scholar 

  • Girennavar B, Jayaprakasha GK, Patil BS. Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furocoumarins. J Food Sci. 2006;71(8):C461–70.

    Google Scholar 

  • Go ML, Wu X, Liu XL. Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem. 2005;12:483–99. https://doi.org/10.2174/0929867053363153.

    Article  CAS  Google Scholar 

  • Gogoi R, Loying R, Sarma N, et al. Evaluation of antimicrobial and antioxidant activities of the methanol extract and its fractions of Artocarpus chama Buch.-Ham stem bark. J Chem. 2016;2016:1–9.

    Google Scholar 

  • Gómez-Pérez V, Ballester I, Almagro L, et al. Phloretin inhibits inflammatory response and improves insulin sensitivity in LPS-stimulated macrophages, role of TLR4 and PPARγ. Antioxidants. 2020;9(7):639.

    Google Scholar 

  • Gonçalves C, Gonçalves IC, Magalhães FD, et al. Poly(lactic acid) composites containing chitosan nanoparticles: a study of the influence of chitosan nanoparticles content and surface modification on the mechanical performance, antibacterial activity and biodegradation rate of the prepared materials. Polym Compos. 2018;39:2741–51.

    Google Scholar 

  • Gosch C, Halbwirth H, Kuhn J, et al. Biosynthesis of phloridzin in apple (Malus domestica Borkh). Plant Sci. 2009;176(2):223–31.

    Article  CAS  Google Scholar 

  • Gozde Y, Burmaoglu S, Yildiz I, et al. Molecular docking studies on fluoro-substituted chalcones as potential DprE1 enzyme inhibitors. J Mol Struct. 2018;1164(2018):50–6.

    Google Scholar 

  • Grudniewska A, Popłoński J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep Purif Technol. 2020;250:117196. https://doi.org/10.1016/j.seppur.2020.117196.

    Article  CAS  Google Scholar 

  • Guo J, Liu A, Cao H, et al. Biotransformation of the chemopreventive agent 2',4',4-trihydroxychalcone (isoliquiritigenin) by UDP-glucuronosyltransferases. Drug Metab Dispos. 2008;36(10):2104–12. https://doi.org/10.1124/dmd.108.021857.

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge CE, Thota DS, Curtis et al. (2011) In vitro biotransformation, in vivo efficacy and pharmacokinetics of antimalarial chalcones. Pharmacology, 87 (1-2), 96-104.

    Google Scholar 

  • Haraguchi H, Tanimoto K, Tamura Y, et al. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry. 1998;48:125–9. https://doi.org/10.1016/s0031-9422(97)01105-9.

    Article  CAS  PubMed  Google Scholar 

  • He Q, Lv Y, Yao K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem. 2008;107(3):1474–80.

    Google Scholar 

  • He Y, Yang L, Liu Y, et al. Characterization of cardamonin metabolism by P450 in different species via HPLC-ESI-ion trap and UPLC-ESI-quadrupole mass spectrometry. Acta Pharmacol Sin. 2009;30:1462–70. https://doi.org/10.1038/aps.2009.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertog MG, Hollman PC, Katan MB. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem. 1992;40(12):2379–83.

    Article  CAS  Google Scholar 

  • Hou Y, Li G, Wang J, et al. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways. Sci Rep. 2017;7:45705. https://doi.org/10.1038/srep45705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YL, Kuo PL, Lin CC. Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells. Life Sci. 2005;77:279–92. https://doi.org/10.1016/j.lfs.2004.09.047.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Nikolic D, van Breemen RB. Hepatic metabolism of licochalcone A, a potential chemopreventive chalcone from licorice (Glycyrrhiza inflata), determined using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2017;409:6937–48. https://doi.org/10.1007/s00216-017-0642-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Human C, De Beer D, Van Der Rijst M, et al. Electrospraying as a suitable method for nanoencapsulation of the hydrophilic bioactive dihydrochalcone, aspalathin. Food Chem. 2019;276:467–74.

    Article  CAS  PubMed  Google Scholar 

  • Janeczko T, Gładkowski W, Kostrzewa-Susłow E. Microbial transformations of chalcones to produce food sweetener derivatives. J Mol Catal B Enzym. 2013;98:55–61.

    Article  CAS  Google Scholar 

  • Jeong GS, Lee DS, Song MY. Butein from Rhus verniciflua protects pancreatic β cells against cytokine-induced toxicity mediated by inhibition of nitric oxide formation. Biol Pharm Bull. 2009;32(3):482–7.

    Google Scholar 

  • Jung JI, Chung E, Seon MR, et al. Isoliquiritigenin (ISL) inhibits ErbB3 signaling in prostate cancer cells. Biofactors. 2006;28:159–68. https://doi.org/10.1002/biof.5520280302.

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Nishikawa T, Shiba Y, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283:9424–34. https://doi.org/10.1074/jbc.M706571200.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Jun CD, Suk K, et al. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol Sci. 2005;91(1):123–31.

    Article  PubMed  Google Scholar 

  • Kim HP, Son KH, Chang HW, et al. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci. 2008;96(3):229–45.

    Article  Google Scholar 

  • Kim SS, Lim J, Bang Y, et al. Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: therapeutic relevance to neurodegenerative disease. J Nutr Biochem. 2012;10:1314–23. https://doi.org/10.1016/j.jnutbio.2011.07.012.

    Article  CAS  Google Scholar 

  • Kiskan B, Yagci Y. Chalcone based epoxy resins. Eur Polym J. 2008;44(9):2804–10.

    Google Scholar 

  • Kleemann C, Schuster R, Rosenecker E, et al. In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocoll. 2020;101:105534.

    Article  CAS  Google Scholar 

  • Kumar R, Saha A, Saha D. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem. 2014;74:279–300. https://doi.org/10.1016/j.ejmech.2013.12.016.

    Article  CAS  Google Scholar 

  • Kuo PL, Hsu YL, Kuo YC. The anti-proliferative inhibition of Butein in human breast cancer cells is mediated by the induction of apoptosis and cell cycle arrest. Food Chem. 2011;126(2):631–8.

    Google Scholar 

  • Li G, Simmler C, Chen L, et al. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharm Sci. 2017;109:182–90. https://doi.org/10.1016/j.ejps.2017.07.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li W, Jiang Y, et al. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with ε-polylysine. Int J Biol Macromol. 2018;120:67–72.

    Google Scholar 

  • Logendra S, Ribnicky DM, Yang H, et al. Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry. 2006;67:1539–46. https://doi.org/10.1016/j.phytochem.2006.05.015.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Song Y, Zhu J. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine. Food Chem. 2021;347:128972.

    Article  CAS  PubMed  Google Scholar 

  • Magalhães PJ, Guido LF, Cruz JM, et al. The impact of xanthohumol on the oxidative stability of beer. Food Chem. 2010;118(3):850–4.

    Google Scholar 

  • Mah SH. Chalcones in diets. In: Xiao J, Sarker SD, Asakawa Y, editors. Handbook of dietary phytochemicals. Singapore: Springer; 2021. p. 273–324.

    Chapter  Google Scholar 

  • Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016;148:154–72. https://doi.org/10.1016/j.lfs.2016.02.048.

    Article  CAS  PubMed  Google Scholar 

  • Malik YA, Awad TA, Abdalla M, et al. Chalcone scaffolds exhibiting acetylcholinesterase enzyme inhibition: mechanistic and computational investigations. Molecules. 2022;27(10):3181. https://doi.org/10.3390/molecules27103181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda H, Nakamura S, Iwami J, et al. Sweet taste and food preference-related protein expressions in the taste buds of rats treated with 4-hydroxyderricin. J Med Food. 2005;8(3):304–10.

    Google Scholar 

  • Mdee LK, Yeboah SO, Abegaz BM. Rhuschalcones II–VI, five new bichalcones from the root bark of Rhus pyroides. J Nat Prod. 2003;66(5):599–604. https://doi.org/10.1021/np020138q.

    Article  CAS  PubMed  Google Scholar 

  • Medina-Alarcon KP, Dutra LA, Pereira-da-Silva MA, et al. Antifungal activity of 2′-hydroxychalcone loaded in nanoemulsion against Paracoccidioides spp. Future Microbiol. 2020;15:21–33.

    Article  CAS  PubMed  Google Scholar 

  • Memon AH, Hamil MSR, Laghari M, et al. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth. J Zhejiang Univ Sci B. 2016;17(9):683–91. https://doi.org/10.1631/jzus.B1600019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi-Ichi F, Miyadera H, Kobayashi T, et al. Inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Parasite mitochondria as a target of chemotherapy. Ann N Y Acad Sci. 2005;1056:46–54. https://doi.org/10.1196/annals.1352.037.

    Article  CAS  PubMed  Google Scholar 

  • Miranda CL, Aponso GLM, Stevens JF, et al. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett. 2000;149:21–9. https://doi.org/10.1016/s0304-3835(99)00328-6.

    Article  CAS  PubMed  Google Scholar 

  • Mojzis J, Varinska L, Mojzisova G, et al. Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res. 2008;57:259–65. https://doi.org/10.1016/j.phrs.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz VA, Kretek CG, Montaña MP, et al. Chalcones as analytical reagents of aluminum: Stability, thermodynamic and kinetic study. Zeitschrift für Physikalische Chemie. 2015;229(3):417–26. https://doi.org/10.1515/zpch-2014-0617.

  • Nielsen AT, Houlihan WJ. The aldol condensation. In: Organic reactions; 2011. p. 1–438.

    Google Scholar 

  • Nohut Maşlakcı N, Biçer A, Turgut Cin G, et al. Electrochromic properties of some bis-chalcone derivatives-based nanofibers. J Appl Polym Sci. 2018;135(12)

    Google Scholar 

  • Nugroho A, Lim SC, Hwang JK. Cardamonin, a chalcone, inhibits human triple-negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Biofactors. 2017;43(2):152–69.

    Article  Google Scholar 

  • Ohkura N, Taniguchi M, Oishi K, Inoue K, Ohta M. Angelica keiskei (Ashitaba) has potential as an antithrombotic health food. Food Res. 2022;6(2):18–24. https://doi.org/10.26656/fr.2017.6(2).121.

    Article  Google Scholar 

  • Oliveira JD, de Alves DKM, Miranda MLD, et al. Chemical composition of essential oil extracted from leaves of Campomanesia adamantium subjected to different hydrodistillation times. Ciência Rural. 2017;47(1):1–7. https://doi.org/10.1590/0103-8478cr20151131.

    Article  Google Scholar 

  • Orhan IE, Senol FS, Ozturk N, et al. Assessment of chalcone derivatives for their binding ability to amyloid-beta (Aβ1−42) peptide and inhibitory activity against acetylcholinesterase enzyme. Int J Biol Macromol. 2014;64:151–6.

    Google Scholar 

  • Orlikova B, Tasdemir D, Golais F, et al. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011;6:125–47. https://doi.org/10.1007/s12263-011-0210-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ötvös SB, Hsieh CT, Wu YC, et al. Continuous-flow synthesis of deuterium-labeled antidiabetic chalcones: studies towards the selective deuteration of the alkynone core. Molecules. 2016;21(3):1–11. https://doi.org/10.3390/molecules21030318.

    Article  CAS  Google Scholar 

  • Pandey MK, Sung B, Aggarwal BB. Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol Pharmacol. 2007;71(1):209–19.

    Google Scholar 

  • Pandey A, Rajak H, Keshari AK, et al. Chalcones: a scaffold for medicinal chemistry. Eur J Med Chem. 2015;97:561–81. https://doi.org/10.1016/j.ejmech.2015.05.019.

    Article  CAS  Google Scholar 

  • Pandey S, Mishra SB, Chandra A. Antimicrobial and antioxidative packaging material based on chitosan-titania/graphene oxide nanocomposites for food packaging applications. Int J Biol Macromol. 2019;137:833–42.

    Google Scholar 

  • Paszkot J, Kawa-rygielska J, Anioł M. Properties of dry hopped dark beers with high xanthohumol content. Antioxidants. 2021;10(5)

    Google Scholar 

  • Pop OL, Pop CR, Dufrechou M, et al. Edible films and coatings functionalization by probiotic incorporation: a review. Polymers. 2020;12(1):12. https://doi.org/10.3390/polym12010012.

    Article  CAS  Google Scholar 

  • Popescu L, Ghendov-Mosanu A, Baerle A, et al. Color stability of yogurt with natural yellow food dye from safflower (Carthamus Tinctorius L). J Eng Sci. 2022;29(1)

    Google Scholar 

  • Qiao H, Zhang X, Wang T, et al. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration. Pharm Biol. 2014;52:228–36. https://doi.org/10.3109/13880209.2013.832334.

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam M, Kim H, Lee Y, et al. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from Radix glycyrrhizae in human health and disease models. Front Aging Neurosci. 2018;10:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rateb NM, Zohdi HF. Atom-efficient, solvent-free, green synthesis of chalcones by grinding. Synth Commun. 2009;39(15):2789–94. https://doi.org/10.1080/00397910802664244.

    Article  CAS  Google Scholar 

  • Ren Y, Yuan C, Qian Y, et al. Constituents of an extract of Cryptocarya rubra housed in a repository with cytotoxic and glucose transport inhibitory effects. J Nat Prod. 2014;77:550–6. https://doi.org/10.1021/np400809w.

    Article  CAS  PubMed  Google Scholar 

  • Rioux B, Pouget C, Ndong-Ntoutoume GMA, et al. Enhancement of hydrosolubility and in vitro antiproliferative properties of chalcones following encapsulation into beta-cyclodextrin/cellulose-nanocrystal complexes. Bioorg Med Chem Lett. 2019;29(15):1895–8.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MJ, Ortiz M, Vázquez A, et al. Competitive kinetics in the inhibition of sugar intestinal transport by phlorizin, in vivo. Rev Esp Fisiol. 1982;38(4):397–401.

    PubMed  Google Scholar 

  • Rodríguez-Martínez B, Ferreira-Santos P, Gullón B, et al. Exploiting the potential of bioactive molecules extracted by ultrasounds from avocado peels – food and nutraceutical applications. Antioxidants. 2021;10(9) https://doi.org/10.3390/antiox10091475.

  • Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. Phytochem Rev. 2016;15(1):87–120.

    Article  CAS  Google Scholar 

  • Rueping M, Bootwicha T, Baars H, et al. Continuous-flow hydration-condensation reaction: Synthesis of αβ-unsaturated ketones from alkynes and aldehydes using a heterogeneous solid acid catalyst. Beilstein J Org Chem. 2011;7:1680–7. https://doi.org/10.3762/bjoc.7.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rukayadi Y, Han S, Yong D, et al. In vitro antibacterial activity of panduratin A against Enterococci clinical isolates. Biol Pharm Bull. 2010;33:1489–93. https://doi.org/10.1248/bpb.33.1489.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Gonzalez M, Rosazza J. Microbial transformations of chalcones: hydroxylation, O-demethylation, and cyclization to flavanones. J Nat Prod. 2004;67(4):553–8.

    Article  CAS  PubMed  Google Scholar 

  • Saroj MK, Payal R, Jain SK, et al. Investigation of indole chalcones encapsulation in β-cyclodextrin: determination of stoichiometry, binding constants and thermodynamic parameters. J Incl Phenom Macrocycl Chem 2018. 2018;90(3):305–20.

    Article  CAS  Google Scholar 

  • Sawle P, Moulton BE, Jarzykowska M, et al. Structure − activity relationships of methoxychalcones as inducers of heme oxygenase-1. Chem Res Toxicol. 2008;21(7):1484–94.

    Article  CAS  PubMed  Google Scholar 

  • Selepe MA, Van Heerden FR. Application of the Suzuki-Miyaura reaction in the synthesis of flavonoids. Molecules. 2013;18(4):4739–65. https://doi.org/10.3390/molecules18044739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R, Chatterjee M. Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine. 2011;18:1056–69. https://doi.org/10.1016/j.phymed.2011.03.004.

    Article  CAS  PubMed  Google Scholar 

  • Simirgiotis MJ, Adachi S, To S, et al. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu). Food Chem. 2008;107:813–9. https://doi.org/10.1016/j.foodchem.2007.08.086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smoak P, Burke SJ, Martin TM, Batdorf HM, Floyd ZE, Collier JJ. Artemisia dracunculus L. Ethanolic extract and an isolated component, DMC2, ameliorate inflammatory signaling in pancreatic β-cells via inhibition of p38 MAPK. Biomolecules. 2022;12(5):708. https://doi.org/10.3390/biom12050708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JS, Kang CM, Park CK, et al. The neuroprotective effect of chalcone derivatives in NMDA-induced retinal injury. Bioorg Med Chem Lett. 2013;23(14):4203–7.

    Google Scholar 

  • Sousa-Batista AJ, Arruda-Costa N, Rossi-Bergmann B, et al. Improved drug loading via spray drying of a chalcone implant for local treatment of cutaneous leishmaniasis. Drug Dev Ind Pharm. 2018a;44(9):1473–80.

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Batista AJ, Pacienza-Lima W, Arruda-Costa N, et al. Depot subcutaneous injection with chalcone CH8-loaded poly(lactic-co-glycolic acid) microspheres as a single-dose treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother. 2018b;2018:62. (3)

    Google Scholar 

  • Sousa-Batista AJ, Arruda-Costa N, Escrivani DO, et al. Single-dose treatment for cutaneous leishmaniasis with an easily synthesized chalcone entrapped in polymeric microparticles. Parasitology. 2020;147(9):1032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa-Batista AD, Arruda-Costa N, Pacienza-Lima W, et al. In Vivo Safety and Efficacy of Chalcone-Loaded Microparticles with Modified Polymeric Matrix against Cutaneous Leishmaniasis. Pharmaceutics. 2022;15(1):51. https://doi.org/10.3390/pharmaceutics15010051.

  • Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry. 2004;65(10):1317–30.

    Article  CAS  PubMed  Google Scholar 

  • Stevens JF, Taylor AW, Deinzer ML. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1999;832(1-2):97–107.

    Article  CAS  PubMed  Google Scholar 

  • Tan BC, Tan SK, Wong SM, et al. Distribution of flavonoids and cyclohexenyl chalcone derivatives in conventional propagated and in vitro-derived field-grown Boesenbergia rotunda (L.) Mansf. Evid Based Complement Altern Med. 2015;

    Google Scholar 

  • Tang C, Hoo PC, Tan LT, et al. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol. 2014;7:474.

    Google Scholar 

  • Tekale S, Mashele S, Pooe O, et al. Biological role of chalcones in medicinal chemistry, vector-borne diseases-recent developments in epidemiology and control. IntechOpen; 2020. https://doi.org/10.5772/intechopen.91626.

    Book  Google Scholar 

  • Teng J, Li Y, Yu W, et al. Naringenin, a common flavanone, inhibits the formation of AGEs in bread and attenuates AGEs-induced oxidative stress and inflammation in RAW264.7 cells. Food Chem. 2018;269:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Tsukiyama RI, Katsura H, Tokuriki N, et al. Antibacterial activity of licochalcone A against sporeforming bacteria. Antimicrob Agents Chemother. 2002;46:1226–30. https://doi.org/10.1128/AAC.46.5.1226-1230.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuntipaleepun M, Chakthong S, Ponglimanont C, et al. Antifungal and cytotoxic substances from the stem barks of Desmos chinensis. Chin Chem Lett. 2012;23:587–90. https://doi.org/10.1016/j.cclet.2012.03.019.

    Article  CAS  Google Scholar 

  • Utsintong M, Massarotti A, Caldarelli A, et al. Parallel synthesis of “click” chalcones as antitubulin agents. Med Chem. 2013;9:510–6. https://doi.org/10.2174/1573406411309040004.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang N, Han S, et al. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One. 2013;8:1–14. https://doi.org/10.1371/journal.pone.0068566.

    Article  CAS  Google Scholar 

  • Wang Y, Xia W, Tao M, et al. 2018. Oncopreventive and oncotherapeutic potential of licorice chalcone compounds: molecular insights: Mini Rev Med Chem; 2022. p. 22.

    Google Scholar 

  • Wojdyło A, Oszmiański J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2014;105(3):940–9.

    Article  Google Scholar 

  • Wu XF, Neumann H, Spannenberg A, et al. Development of a general palladium-catalyzed carbonylative heck reaction of aryl halides. J Am Chem Soc. 2010;132(41):14596–602. https://doi.org/10.1021/ja1059922.

    Article  CAS  PubMed  Google Scholar 

  • Xu LW, Li L, Xia CG, et al. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones. Helv Chim Acta. 2004;87(12):3080–4.

    Article  CAS  Google Scholar 

  • Xu J, Wei K, Zhang G, et al. Antibacterial activity of isolated flavonoids from Glycyrrhiza glabra against Staphylococcus aureus. Biotechnol Bioprocess Eng. 2017;22(6):659–64.

    Google Scholar 

  • Yamazaki S, Morita T, Endo H, et al. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett. 2002;183:23–30. https://doi.org/10.1016/s0304-3835(02)00113-1.

    Article  CAS  PubMed  Google Scholar 

  • Yang J-H, Hwang Y-H, Gu M-J, et al. Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung cancer growth. Mol Carcinog. 2015;54(4):322–31.

    Article  Google Scholar 

  • Yoshimura M, Sano A, Kamei JI, et al. Identification and quantification of metabolites of orally administered naringenin chalcone in rats. J Agric Food Chem. 2009;57:6432–7. https://doi.org/10.1021/jf901137x.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu X, Hou A, Wang H. Inhibitory effect of 2,4,2’,4’-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull. 2009;32:86–90. https://doi.org/10.1248/bpb.32.86.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu P, Zhang X, et al. Natural antioxidant-isoliquiritigenin ameliorates contractile dysfunction of hypoxic cardiomyocytes via AMPK signaling pathway. Mediat Inflamm. 2013;2013:390890. https://doi.org/10.1155/2013/390890.

    Article  CAS  Google Scholar 

  • Zhang ZH, Yu LJ, Hui XC, et al. Hydroxy-safflor yellow A attenuates Aβ1−42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res. 2014;1563:72–80. https://doi.org/10.1016/j.brainres.2014.03.036.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang M, Long X, et al. Simultaneous extraction of four flavonoids from pigeon pea leaves using the negative-pressure cavitation method. Sep Sci Technol. 2017;52(1):104–12.

    Google Scholar 

  • Zhang H, Sun X, Hao J, et al. Cardamonin inhibits the proliferation and metastasis of non-small-cell lung cancer cells by suppressing the PI3K/Akt/mTOR pathway. Anti-Cancer Drugs. 2018;29(1):48–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Suharoschi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suharoschi, R., Pop, O.L., Ciont, C., Muresan, C.I., Hegheş, S.C. (2023). Chalcones. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics