Skip to main content

Microbial Production of Pantothenic Acid

  • Living reference work entry
  • First Online:
Microbial Production of Food Bioactive Compounds

Abstract

Sustainable biosynthesis of value-added chemicals has been gaining interest in the last two decades due to increased environmental concerns and the depletion of petroleum resources. Metabolic engineering of microorganisms has been recognized as a significant development in making such bio-based production economical at a large scale to produce chemicals, fuels, amino acids, vitamins, polymers, and many others. D-pantothenic acid (DPA) encompasses many applications in the food, cosmetic, and pharmaceutical industries. Chemical, chemo-enzymatic, and biological routes were reported for the production of DPA. High-yielding chemical and chemo-enzymatic methods of DPA synthesis are limited by using poisonous chemicals and DL-pantolactone racemic mixture formation. Alternatively, the safe microbial fermentative route of DPA production was found promising. In this chapter, we have summarized the various metabolic engineering strategies and microbial systems reported for the microbial production of DPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADC:

Aspartate-1-decarboxylase

ASP:

L-aspartic acid

AspA:

Aspartate ammonia-lyase

AspB:

Aspartate aminotransferase

aspB :

Gene encoding for aspartate aminotransferase

BA:

β-alanine

CH2-THF:

5,10-methylenetetrahydrofolate

CoA:

Coenzyme A

DPA:

D-pantothenic acid

DPL:

D-pantolactone

FA:

Fumaric acid

OD:

Optical density

panC :

Gene encoding for pantoate-β-alanine ligase

panD :

Gene encoding for aspartate-1-decarboxylase

References

  • Abidin MZ, Saravanan T, Zhang J, Tepper PG, Strauss E, Poelarends GJ. Modular enzymatic cascade synthesis of vitamin B5 and its derivatives. Chemistry (Weinheim an der Bergstrasse, Germany). 2018;24(66):17434.

    CAS  PubMed  Google Scholar 

  • Barnard L, Mostert KJ, van Otterlo WA, Strauss E. Developing pantetheinase-resistant pantothenamide antibacterials: structural modification impacts on PanK interaction and mode of action. ACS Infectious Diseases. 2018;4(5):736–43.

    Article  CAS  PubMed  Google Scholar 

  • Camargo FB Jr, Gaspar LR, Maia Campos PM. Skin moisturizing effects of panthenol-based formulations. J Cosmet Sci. 2011;62(4):361.

    CAS  PubMed  Google Scholar 

  • Chassagnole C, Diano A, Létisse F, Lindley ND. Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation. J Biotechnol. 2003;104(1–3):261–72.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-q, Zhao S-p, Zhao Y-h. Efficacy and tolerability of coenzyme A vs pantethine for the treatment of patients with hyperlipidemia: a randomized, double-blind, multicenter study. J Clin Lipidol. 2015;9(5):692–7.

    Article  PubMed  Google Scholar 

  • Cheng P, Wang J, Wu Y, Jiang X, Pei X, Su W. Recombinant expression and molecular insights into the catalytic mechanism of an NADPH-dependent conjugated polyketone reductase for the asymmetric synthesis of (R)-pantolactone. Enzym Microb Technol. 2019;126:77–85.

    Article  CAS  Google Scholar 

  • Dusch N, Pühler A, Kalinowski J. Expression of the Corynebacterium glutamicum panD gene encoding l-aspartate-α-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol. 1999;65(4):1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusch N, Thomas H, Thierbach G, inventors; US Patent 6,911,329 B2, assignee. Process for the fermentative preparation of D-pantothenic acid using coryneform bacteria. 2005.

    Google Scholar 

  • Eggeling L, Sahm H, inventors; Patent No. WO 02/055711, assignee. Method for the production of D-pantothenic acid by fermentation. 2002.

    Google Scholar 

  • Feng Z, Zhang J, Chen G, Ge Y, Zhang X, Zhu H. Extracellular expression of L-aspartate-α-decarboxylase from Bacillus tequilensis and its application in the biosynthesis of β-alanine. Appl Biochem Biotechnol. 2019;189(1):273–83.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Liu Z, Liu K, Zhou Z, Cui W. Biocatalytic access to β-alanine by a two-enzyme cascade synthesis. Chin J Biotechnol. 2017;33(5):875–9.

    CAS  Google Scholar 

  • Gonzalez-Lopez J, Aliaga L, Gonzalez-Martinez A, Martinez-Toledo MV. Pantothenic acid. In: Vandamme EJ, Revuelta JL, editors. Industrial biotechnology of vitamins, biopigments, antioxidants. Wiley-VCH Verlag GmbH & Co; 2016. p. 67–101.

    Chapter  Google Scholar 

  • Gorski J, Proksch E, Baron JM, Schmid D, Zhang L. Dexpanthenol in wound healing after medical and cosmetic interventions (Postprocedure wound healing). Pharmaceuticals. 2020;13(7):138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann T, Marx A, Pfefferle W, Rieping M, inventors; US Patent 6,682,915 B2, assignee. Process for the fermentative preparation of D-pantothenic acid and/or its salts. 2003.

    Google Scholar 

  • Hikichi Y, Moriya T, Miki H, Yamaguchi T, Nogami I, inventors; US Patent 5518906A, assignee. Production of D-pantoic acid and D-pantothenic acid. 1996.

    Google Scholar 

  • Hilton MG, Mead GC, Elsden SR. The metabolism of pyrimidines by proteolytic clostridia. Arch Microbiol. 1975;102(1):145–9.

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Kataoka M, Shimizu S. Functional analyses and application of microbial lactonohydrolases. Biotechnol Bioprocess Eng. 2002;7(3):130–7.

    Article  CAS  Google Scholar 

  • Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V, et al. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol. 2005;71(6):3255–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S. Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol. 1995;44(3):333–8.

    Article  CAS  Google Scholar 

  • Kataoka M, Nomura J-i, Shinohara M, Nose K, Sakamoto K, Shimizu S. Purification and characterization of a novel lactonohydrolase from Agrobacterium tumefaciens. Biosci Biotechnol Biochem. 2000;64(6):1255–62.

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Furukawa Y, Wakasugi J-i, Ishihara Y, Nakayama A. Antagonism of L (-) pantothenic acid on lipid metabolism in animals. J Nutr Sci Vitaminol. 1980;26(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  • Leonardi R, Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2(2).

    Google Scholar 

  • Li H, Lu X, Chen K, Yang J, Zhang A, Wang X, et al. β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Molecular Catalysis. 2018;449:93–8.

    Article  CAS  Google Scholar 

  • Li B, Zhang B, Wang P, Cai X, Tang YQ, Jin JY, et al. Targeting metabolic driving and minimization of by-products synthesis for high-yield production of D-pantothenate in Escherichia coli. Biotechnol J. 2021:2100431.

    Google Scholar 

  • Liang L-Y, Zheng Y-G, Shen Y-C. Optimization of β-alanine production from β-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem. 2008;43(7):758–64.

    Article  CAS  Google Scholar 

  • Liu Z, Sun Z, Leng Y. Directed evolution and characterization of a novel D-pantonohydrolase from Fusarium moniliforme. J Agric Food Chem. 2006;54(16):5823–30.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zheng W, Ye W, Wang C, Gao Y, Cui W, et al. Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine. Appl Microbiol Biotechnol. 2019;103(23):9443–53.

    Article  CAS  PubMed  Google Scholar 

  • Macuamule CJ, Tjhin ET, Jana CE, Barnard L, Koekemoer L, De Villiers M, et al. A pantetheinase-resistant pantothenamide with potent, on-target, and selective antiplasmodial activity. Antimicrob Agents Chemother. 2015;59(6):3666–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao L, Li Y, Zhu T. Metabolic engineering of the methylotrophic yeast Pichia pastoris (Komagataella phaffii) for the production of β-alanine from methanol. 2021.

    Google Scholar 

  • Miki H, Yamaguchi T, Hikichi Y, Nogami I, Moriya T, inventors; EP Patent 0493060A2, assignee. Production method of D-pantothenic acid and plasmids and microorganisms thereof. 1991.

    Google Scholar 

  • Miller JW, Rucker RB. Pantothenic acid. In: JWJ E, Macdonald IA, Zeisel SH, editors. Present knowledge in nutrition. Wiley-Blackwell; 2012. p. 375–89.

    Chapter  Google Scholar 

  • Mo Q, Mao A, Li Y, Shi G. Substrate inactivation of bacterial L-aspartate α-decarboxylase from Corynebacterium jeikeium K411 and improvement of molecular stability by saturation mutagenesis. World J Microbiol Biotechnol. 2019;35(4):1–8.

    Article  CAS  Google Scholar 

  • Moriya T, Hikichi Y, Moriya Y, Yamaguchi T, inventors; US Patent 5,932,457, assignee. Process for producing D-pantoic acid and D-pantothenic acid or salts thereof. 1999.

    Google Scholar 

  • Muller J, Eichler K, inventors; US Patent 0050335 A1, assignee. Animal feed supplement containing d-pantothenic acid and/or its salts, improved method for the production thereof, and its use. 2004.

    Google Scholar 

  • Parthasarathy A, Savka MA, Hudson AO. The synthesis and role of β-alanine in plants. Front Plant Sci. 2019;10:921.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei W, Zhang J, Deng S, Tigu F, Li Y, Li Q, et al. Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol. 2017;101(15):6015–21.

    Article  CAS  PubMed  Google Scholar 

  • Piao X, Wang L, Lin B, Chen H, Liu W, Tao Y. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield. Metab Eng. 2019;54:244–54.

    Article  CAS  PubMed  Google Scholar 

  • Postaru M, Cascaval D, Galaction A-I. Pantothenic acid–applications, synthesis and biosynthesis. Med Surg J. 2015;119(3):938–43.

    Google Scholar 

  • Qian Y, Liu J, Song W, Chen X, Luo Q, Liu L. Production of β-alanine from fumaric acid using a dual-enzyme cascade. ChemCatChem. 2018;10(21):4984–91.

    Article  Google Scholar 

  • Qian Y, Lu C, Liu J, Song W, Chen X, Luo Q, et al. Engineering protonation conformation of l-aspartate-α-decarboxylase to relieve mechanism-based inactivation. Biotechnol Bioeng. 2020;117(6):1607–14.

    Article  CAS  PubMed  Google Scholar 

  • Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, et al. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. 2010;37(7):3199–205.

    Article  CAS  PubMed  Google Scholar 

  • Rieping M, Hermann T, inventors; US Patent 6,686,183B2, assignee. Process for the fermentative preparation of D-pantothenic acid and/or its salts. 2004.

    Google Scholar 

  • Rowicki T, Synoradzki L, Włostowski M. Calcium pantothenate. Part 1.(R, S)-pantolactone technology improvement at the tonnage scale. Ind Eng Chem Res. 2006;45(4):1259–65.

    Article  CAS  Google Scholar 

  • Sahm H, Eggeling L. D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-Valine synthesis for D-pantothenate over production. Appl Environ Microbiol. 1999;65(5):1973–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Zhao L, Li Y, Zhang L, Shi G. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett. 2014;36(8):1681–6.

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Fukuwatari T. The chemistry of pantothenic acid (vitamin B5). In: Preedy VR, editor. B vitamins and folate: chemistry, analysis, function and effects. Royal Society of Chemistry; 2012. p. 127–34.

    Chapter  Google Scholar 

  • Shimizu S, Kataoka M. Pantothenic acid and related compounds. In: Flickinger MC, editor. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley; 2009. p. 1–8.

    Google Scholar 

  • Shimizu S, Kataoka M, Shimizu K, Hirakata M, Sakamoto K, Yamada H. Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum. Eur J Biochem. 1992;209(1):383–90.

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Lee J, Ko Y-S, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng. 2015;30:121–9.

    Article  CAS  PubMed  Google Scholar 

  • Stiller ET, Keresztesy JC, Finkelstein J. Pantothenic acid. VI. The isolation and structure of the lactone moiety. J Am Chem Soc. 1940a;62(7):1779–84.

    Article  CAS  Google Scholar 

  • Stiller ET, Harris SA, Finkelstein J, Keresztesy JC, Folkers K. Pantothenic acid. VIII. The total synthesis of pure pantothenic acid. J Am Chem Soc. 1940b;62(7):1785–90.

    Article  CAS  Google Scholar 

  • Tadi SRR, Nehru G, Limaye AM, Sivaprakasam S. High-level expression and optimization of pantoate-β-alanine ligase in Bacillus megaterium for the enhanced biocatalytic production of D-pantothenic acid. J Food Sci Technol. 2021a:1–10.

    Google Scholar 

  • Tadi SRR, Nehru G, Sivaprakasam S. Combinatorial approach for improved production of whole-cell 3-aminopropionic acid in recombinant Bacillus megaterium: codon optimization, gene duplication and process optimization. 3 Biotech. 2021b;11(7):1–11.

    Article  Google Scholar 

  • Tao Y, Yao P, Yuan J, Han C, Feng J, Wang M, et al. Efficient biosynthesis of β-alanine with a tandem reaction strategy to eliminate amide by-product in the nitrilase-catalyzed hydrolysis. J Mol Catal B Enzym. 2016;133:S60–S7.

    Article  Google Scholar 

  • Thierbach G, Dusch N, inventors; US Patent 6,667,166 B2, assignee. Processes for preparing D-pantothenic acid using coryneform bacteria. 2003.

    Google Scholar 

  • Tigu F, Zhang J, Liu G, Cai Z, Li Y. A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of d-pantothenic acid with high productivity. Appl Microbiol Biotechnol. 2018;102(14):6039–46.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Piao X, Cui S, Hu M, Tao Y. Enhanced production of β-alanine through co-expressing two different subtypes of l-aspartate-α-decarboxylase. J Ind Microbiol Biotechnol. 2020;47(6–7):465–74.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Mao Y, Wang Z, Ma H, Chen T. Advances in biotechnological production of β-alanine. World J Microbiol Biotechnol. 2021;37(5):1–11.

    Article  Google Scholar 

  • White WH, Gunyuzlu PL, Toyn JH. Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem. 2001;276(14):10794–800.

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Major RT. The structure of pantothenic acid. Science. 1940;91:246–50.

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Lyman CM, Goodyear GH, Truesdail JH, Holaday D. “Pantothenic acid,” A growth determinant of universal biological occurrence. J Am Chem Soc. 1933;55(7):2912–27.

    Article  CAS  Google Scholar 

  • Williams RJ, Mitchell HK, Weinstock HH Jr, Snell EE. Pantothenic acid. VII. Partial and total synthesis studies. J Am Chem Soc. 1940;62(7):1784–5.

    Article  CAS  Google Scholar 

  • Xu J, Patassini S, Begley P, Church S, Waldvogel HJ, Faull RL, et al. Cerebral deficiency of vitamin B5 (D-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem Biophys Res Commun. 2020;527(3):676–81.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhu Y, Zhou Z. Systematic engineering of the rate-limiting step of β-alanine biosynthesis in Escherichia coli. Electron J Biotechnol. 2021a;51:88–94.

    Article  CAS  Google Scholar 

  • Xu J, Zhou L, Yin M, Zhou Z. Novel mode engineering for β-alanine production in Escherichia coli with the guide of adaptive laboratory evolution. Microorganisms. 2021b;9(3):600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yocum RR, Patterson TA, Pero JG, Hermann T, inventors; US Patent 7,291,489, assignee. Microorganisms and processes for enhanced production of pantothenate. 2007.

    Google Scholar 

  • Yocum RR, Patterson TA, Pero JG, Hermann T, inventors; US Patent 7989187B2, assignee. Microorganisms and processes for enhanced production of pantothenate. 2011.

    Google Scholar 

  • Yu X-J, Huang C-Y, Xu X-D, Chen H, Liang M-J, Xu Z-X, et al. Protein engineering of a pyridoxal-5′-phosphate-dependent l-aspartate-α-decarboxylase from Tribolium castaneum for β-alanine production. Molecules. 2020;25(6):1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhang R, Xu M, Zhang X, Yang T, Liu F, et al. Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis L-aspartate α-decarboxylase for an efficient β-alanine production. Process Biochem. 2018;70:117–23.

    Article  CAS  Google Scholar 

  • Zhang B, Zhang X-M, Wang W, Liu Z-Q, Zheng Y-G. Metabolic engineering of Escherichia coli for d-pantothenic acid production. Food Chem. 2019;294:267–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen L, Jin J-Y, Zhong N, Cai X, Zou S-P, et al. Strengthening the (R)-pantoate pathway to produce D-pantothenic acid based on systematic metabolic analysis. Food Biosci. 2021;43:101283.

    Article  CAS  Google Scholar 

  • Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, et al. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Appl Microbiol Biotechnol. 2020;104(6):2545–59.

    Article  CAS  PubMed  Google Scholar 

  • Zou SP, Wang ZJ, Zhao K, Zhang B, Niu K, Liu ZQ, et al. High-level production of d-pantothenic acid from glucose by fed-batch cultivation of Escherichia coli. Biotechnol Appl Biochem. 2021a;68:1227–35.

    CAS  PubMed  Google Scholar 

  • Zou S, Zhao K, Tang H, Zhang Z, Zhang B, Liu Z, et al. Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies. J Biotechnol. 2021b;339:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Zou S-P, Zhao K, Wang Z-J, Zhang B, Liu Z-Q, Zheng Y-G. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110. 3 Biotech. 2021c;11(6):1–13.

    Article  Google Scholar 

  • Zrenner R, Riegler H, Marquard CR, Lange PR, Geserick C, Bartosz CE, et al. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis. New Phytol. 2009;183(1):117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Sivaprakasam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tadi, S.R.R., Nehru, G., Sivaprakasam, S. (2022). Microbial Production of Pantothenic Acid. In: Jafari, S.M., Harzevili, F.D. (eds) Microbial Production of Food Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-030-81403-8_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81403-8_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81403-8

  • Online ISBN: 978-3-030-81403-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics