Skip to main content

Optical Coherence Tomography Angiography for Biomarker Indices in Diabetes

  • 23 Accesses

Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Optical coherence tomography angiography (OCTA) visualizes the structure and flow of retinal vasculature using motion contrast. Diabetic retinopathy (DR), commonly present in one-third of the patients with diabetes, is a major microvascular complication of diabetes mellitus caused by retinal ischemia and vascular hyperpermeability. Microvasculature changes, such as foveal avascular zone enlargement and decrease in vascular density of the deep capillary plexus, have been identified in diabetic eyes without clinical retinopathy. OCTA of nonproliferative DR shows morphologically well-defined microaneurysms and intraretinal vascular shunts around perfusion dropouts at the deep capillary plexus level. In proliferative DR, OCTA visualizes detailed features and extent of neovascularization in response to anti-vascular endothelial factor and laser treatment. Diabetes-induced microvascular changes can be quantified by OCTA, and significant correlations have been shown with serum biomarkers representing pancreatic β-cell function and insulin sensitivity. Compared to conventional fluorescein angiography, OCTA can be performed more safely in patients with impaired renal function and can provide high-contrast vascular images. OCTA limitations on projection artifacts, segmentation errors, and data differences between equipment remain to be addressed.

Keywords

  • Diabetic retinopathy
  • Foveal avascular zone
  • Neovascularization
  • Optical coherence tomography angiography
  • Vascular density

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

DM:

Diabetes mellitus

DME:

Diabetic macular edema

DR:

Diabetic retinopathy

FAZ:

Foveal avascular zone

FFA:

Fluorescein angiography

HbA1c:

Glycated hemoglobin

HOMA:

Homeostasis model assessment

ILM:

Inner limiting membrane

NPDR:

Nonproliferative diabetic retinopathy

OCT:

Optical coherence tomography

OCTA:

Optical coherence tomography angiography

ONH:

Optic nerve head

PDR:

Proliferative diabetic retinopathy

PRP:

Panretinal photocoagulation

VEGF:

Vascular endothelial growth factor

References

  • Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(8):3907–13.

    CrossRef  CAS  PubMed  Google Scholar 

  • Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, Nissen SE, Kattan MW. Predicting 10-year risk of end-organ complications of type 2 diabetes with and without metabolic surgery: a machine learning approach. Diabetes Care. 2020;43(4):852–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhanushali D, Anegondi N, Gadde SG, Srinivasan P, Chidambara L, Yadav NK, Sinha Roy A. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT519–25.

    CrossRef  PubMed  Google Scholar 

  • Bradley PD, Sim DA, Keane PA, Cardoso J, Agrawal R, Tufail A, Egan CA. The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(2):626–31.

    CrossRef  CAS  PubMed  Google Scholar 

  • Carnevali A, Sacconi R, Corbelli E, Tomasso L, Querques L, Zerbini G, Scorcia V, Bandello F, Querques G. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chatziralli IP, Sergentanis TN, Sivaprasad S. Prediction of regression of retinal neovascularisation after panretinal photocoagulation for proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(9):1715–21.

    CrossRef  CAS  PubMed  Google Scholar 

  • Choi W, Waheed NK, Moult EM, Adhi M, Lee B, De Carlo T, Jayaraman V, Baumal CR, Duker JS, Fujimoto JG. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy. Retina. 2017;37(1):11–21.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi EY, Lee SC, Kim M. Optical coherence tomography angiography before and after bevacizumab injection in ocular ischemic syndrome. Retina. 2018;38(3):e23–5.

    CrossRef  PubMed  Google Scholar 

  • Choi EY, Park SE, Lee SC, Koh HJ, Kim SS, Byeon SH, Kim M. Association between clinical biomarkers and optical coherence tomography angiography parameters in type 2 diabetes mellitus. Invest Ophthalmol Vis Sci. 2020;61(3):4.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Couturier A, Mané V, Bonnin S, Erginay A, Massin P, Gaudric A, Tadayoni R. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35(11):2384–91.

    CrossRef  PubMed  Google Scholar 

  • Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye. 2009;23(7):1496–508.

    CrossRef  CAS  PubMed  Google Scholar 

  • de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, Baumal CR, Crawford C, Reichel E, Witkin AJ, Duker JS, Waheed NK. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–70.

    CrossRef  PubMed  Google Scholar 

  • de Carlo TE, Bonini Filho MA, Baumal CR, Reichel E, Rogers A, Witkin AJ, Duker JS, Waheed NK. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging. 2016a;47(2):115–9.

    CrossRef  Google Scholar 

  • de Carlo TE, Chin AT, Joseph T, Baumal CR, Witkin AJ, Duker JS, Waheed NK. Distinguishing diabetic macular edema from capillary nonperfusion using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 2016b;47(2):108–14.

    CrossRef  PubMed  Google Scholar 

  • Dervenis N, Mikropoulou AM, Tranos P, Dervenis P. Ranibizumab in the treatment of diabetic macular edema: a review of the current status, unmet needs, and emerging challenges. Adv Ther. 2017;34(6):1270–82.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Di G, Weihong Y, Xiao Z, Zhikun Y, Xuan Z, Yi Q, Fangtian D. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2016;254(5):873–9.

    CrossRef  PubMed  Google Scholar 

  • Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Author response: quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(3):1767.

    CrossRef  PubMed  Google Scholar 

  • Dodo Y, Suzuma K, Ishihara K, Yoshitake S, Fujimoto M, Yoshitake T, Miwa Y, Murakami T. Clinical relevance of reduced decorrelation signals in the diabetic inner choroid on optical coherence tomography angiography. Sci Rep. 2017;7(1):5227.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs – an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology. 2020;127(4S):S99–S119.

    Google Scholar 

  • Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, Ying GS. Diabetic retinopathy preferred practice pattern(R). Ophthalmology. 2020;127(1):P66–P145.

    CrossRef  PubMed  Google Scholar 

  • Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL III, Klein R, American Diabetes A. Diabetic retinopathy. Diabetes Care. 2003;26(Suppl 1):S99–S102.

    CrossRef  PubMed  Google Scholar 

  • Hafner J, Karst S, Sacu S, Scholda C, Pablik E, Schmidt-Erfurth U. Correlation between corneal and retinal neurodegenerative changes and their association with microvascular perfusion in type II diabetes. Acta Ophthalmol. 2019;97(4):e545–50.

    CrossRef  PubMed  Google Scholar 

  • Hirata T, Higashiyama A, Kubota Y, Nishimura K, Sugiyama D, Kadota A, Nishida Y, Imano H, Nishikawa T, Miyamatsu N, Miyamoto Y, Okamura T. HOMA-IR values are associated with glycemic control in Japanese subjects without diabetes or obesity: the KOBE study. J Epidemiol. 2015;25(6):407–14.

    CrossRef  PubMed  Google Scholar 

  • Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, Wilson DJ, Huang D. Optical coherence tomography angiography features of diabetic retinopathy. Retina. 2015;35(11):2371–6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44 e1.

    CrossRef  PubMed  Google Scholar 

  • Ishibazawa A, Nagaoka T, Yokota H, Takahashi A, Omae T, Song YS, Takahashi T, Yoshida A. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(14):6247–55.

    CrossRef  PubMed  Google Scholar 

  • Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in diabetic retinopathy. Rev Diabet Stud. 2015;12(1–2):159–95.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Klein R. Epidemiology of diabetic retinopathy. In: Duh E, editor. Diabetic retinopathy. Totowa: Humana Press; 2008.

    Google Scholar 

  • Lee J, Moon BG, Cho AR, Yoon YH. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology. 2016;123(11):2368–75.

    CrossRef  PubMed  Google Scholar 

  • Li L, Almansoob S, Zhang P, Zhou YD, Tan Y, Gao L. Quantitative analysis of retinal and choroid capillary ischaemia using optical coherence tomography angiography in type 2 diabetes. Acta Ophthalmol. 2019;97(3):240–6.

    CrossRef  PubMed  Google Scholar 

  • Ludvigsson J. C-peptide in diabetes diagnosis and therapy. Front Biosci. 2013;5:214–23.

    CrossRef  Google Scholar 

  • Lupidi M, Coscas G, Coscas F, Fiore T, Spaccini E, Fruttini D, Cagini C. Retinal microvasculature in nonproliferative diabetic retinopathy: automated quantitative optical coherence tomography angiography assessment. Ophthalmic Res. 2017;58(3):131–41.

    CrossRef  PubMed  Google Scholar 

  • Mastropasqua R, Toto L, Di Antonio L, Borrelli E, Senatore A, Di Nicola M, Di Martino G, Ciancaglini M, Carpineto P. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions. Sci Rep. 2017;7:40763.

    CrossRef  CAS  PubMed  Google Scholar 

  • Matsunaga DR, Yi JJ, Koo LOD, Ameri H, Puliafito CA, Kashani AH. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging. 2015;46(8):796–805.

    CrossRef  Google Scholar 

  • Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902–16.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nesper PL, Scarinci F, Fawzi AA. Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia. PLoS One. 2017;12(1):e0169926.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Samara WA, Say EA, Khoo CT, Higgins TP, Magrath G, Ferenczy S, Shields CL. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35(11):2188–95.

    CrossRef  PubMed  Google Scholar 

  • Scarinci F, Picconi F, Giorno P, Boccassini B, De Geronimo D, Varano M, Frontoni S, Parravano M. Deep capillary plexus impairment in patients with type 1 diabetes mellitus with no signs of diabetic retinopathy revealed using optical coherence tomography angiography. Acta Ophthalmol. 2018;96(2):e264–5.

    CrossRef  PubMed  Google Scholar 

  • Sellam A, Glacet-Bernard A, Coscas F, Miere A, Coscas G, Souied EH. Qualitative and quantitative follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF: optical coherence tomography angiography follow-up of retinal vein occlusion. Retina. 2017;37(6):1176–84.

    CrossRef  CAS  PubMed  Google Scholar 

  • Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography. Retina. 2015;35(11):2161–2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    CrossRef  PubMed  Google Scholar 

  • Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, Gardiner TA, Lyons TJ, Hammes HP, Simo R, Lois N. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

    CrossRef  PubMed  Google Scholar 

  • Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–83.

    CrossRef  PubMed  Google Scholar 

  • Tam J, Dhamdhere KP, Tiruveedhula P, Lujan BJ, Johnson RN, Bearse MA Jr, Adams AJ, Roorda A. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom Vis Sci. 2012;89(5):E692–703.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vujosevic S, Muraca A, Alkabes M, Villani E, Cavarzeran F, Rossetti L, De Cilla S. Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina. 2019;39(3):435–45.

    CrossRef  PubMed  Google Scholar 

  • Zhang M, Hwang TS, Dongye C, Wilson DJ, Huang D, Jia Y. Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(13):5101–6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Choi, E.Y., Kim, M. (2022). Optical Coherence Tomography Angiography for Biomarker Indices in Diabetes. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81303-1_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81303-1_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81303-1

  • Online ISBN: 978-3-030-81303-1

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences