Skip to main content

Introduction on Personalized Immune-Oncology

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 48 Accesses

Abstract

Cancer immunotherapy, which aims to eradicate tumor cells with the patient’s own immune system, needs to be individualized the same as other therapeutic strategies, because only a specific group of patients clinically respond to the therapy and nonresponders are at a high risk of severe adverse effects. Therefore, the process of trial and error for selecting the best therapeutic regime imposes side effects and high costs on patients and governments. In current years, personalized medicine has received a great deal of attention. In personalized medicine, evidence obtained from the genomic, proteomic, microbiome, and immune profile, lifestyle, and clinical symptoms from each patient is analyzed for finding the most effective therapy. It is expected that personalized medicine revolutionizes immune-oncology and leads to developing a new generation of immunotherapeutics with high specificity, efficacy, and least side effects. However, the development of personalized medicine faces some challenges that medical health societies and governments should consider. This chapter offers a comprehensive review of different aspects of personalized immune-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bapsy PP, Sharan B, Kumar C, Das RP, Rangarajan B, Jain M, Suresh Attili VS, Subramanian S, Aggarwal S, Srivastava M, Vaid A (2014) Open-label, multi-center, non-randomized, single-arm study to evaluate the safety and efficacy of dendritic cell immunotherapy in patients with refractory solid malignancies, on supportive care. Cytotherapy 16:234

    Google Scholar 

  • Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD (2016) Microfluidics: a new tool for modeling cancer–immune interactions. Trends Cancer 2:6

    Google Scholar 

  • Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma Neoantigen-specific T cells. Science 348:803

    Google Scholar 

  • Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382

    Google Scholar 

  • Chen GM, Azzam A, Ding YY, Barrett DM, Grupp SA, Tan K (2020) Dissecting the tumor–immune landscape in chimeric antigen receptor T-cell therapy: key challenges and opportunities for a systems immunology approach. Clin Cancer Res 26:3505

    Google Scholar 

  • Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ (2012) Dendritic cell-based vaccines: barriers and opportunities. Future Oncol 8:1273

    Google Scholar 

  • Cogdill AP, Andrews MC, Wargo JA (2017) Hallmarks of response to immune checkpoint blockade. Br J Cancer 117:1

    Google Scholar 

  • Cui JH, Lin KR, Yuan SH, Jin Y Bin, Chen XP, Su XK, Jiang J, Pan YM, Mao SL, Mao XF, Luo W (2018) TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer. Front Immunol 9:2729

    Google Scholar 

  • Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50:1

    Google Scholar 

  • Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, Zidi B, Zhang S, Badger JH, Vetizou M, Cole AM, Fernandes MR, Prescott S, Costa RGF, Balaji AK, Morgun A, Vujkovic-Cvijin I, Wang H, Borhani AA, Schwartz MB, Dubner HM, Ernst SJ, Rose A, Najjar YG, Belkaid Y, Kirkwood JM, Trinchieri G, Zarour HM (2021) Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371:595

    Google Scholar 

  • Delhalle S, Bode SFN, Balling R, Ollert M, He FQ (2018) A roadmap towards personalized immunology. NPJ Syst Biol Appl 4:9

    Google Scholar 

  • Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18:407

    Google Scholar 

  • Du M, Hari P, Hu Y, Mei H (2020) Biomarkers in individualized management of chimeric antigen receptor T Cell Therapy. Biomark Res 8:1

    Google Scholar 

  • Enblad G, Karlsson H, GammelgĂĄrd G, Wenthe J, Lövgren T, Amini RM, Wikstrom KI, Essand M, Savoldo B, Hallböök H, Höglund M, Dotti G, Brenner MK, Hagberg H, Loskog A (2018) A phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin Cancer Res 24:6185

    Google Scholar 

  • Erdmann A, Rehmann-Sutter C, Bozzaro C (2021) Patients’ and Professionals’ views related to ethical issues in precision medicine: a mixed research synthesis. BMC Med Ethics 22:1

    Google Scholar 

  • Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248

    Google Scholar 

  • Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, Marie Nicolay HJ, Sigalotti L, Maio M (2011) The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 5:164

    Google Scholar 

  • Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, Shalabi H, Fountaine TJ, Shern JF, Majzner RG, Stroncek DF, Sabatino M, Feng Y, Dimitrov DS, Zhang L, Nguyen S, Qin H, Dropulic B, Lee DW, Mackall CL (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24:20

    Google Scholar 

  • Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, Sugimoto S, Sato T (2018) Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23:787

    Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014

    Google Scholar 

  • Goldberg MS (2019) Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 19:587

    Google Scholar 

  • Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2598

    Google Scholar 

  • Hayase E, Jenq RR (2021) Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med 13:1

    Google Scholar 

  • Herrmann IK, Rösslein M (2016) Personalized medicine: the enabling role of nanotechnology. Nanomedicine 11:1

    Google Scholar 

  • Heylman C, Sobrino A, Shirure VS, Hughes CCW, George SC (2014) A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exp Biol Med 239:1240

    Google Scholar 

  • Homicsko K (2020) Organoid technology and applications in cancer immunotherapy and precision medicine. Curr Opin Biotechnol 65:242

    Google Scholar 

  • Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y (2021) Current strategies for tumor photodynamic therapy combined with immunotherapy. Front Oncol 11:4774

    Google Scholar 

  • Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, He MX, Walker W, Zhang G, Tian T, Cheng C, Wei Z, Palakurthi S, Bittinger M, Vitzthum H, Kim JW, Merlino A, Quinn M, Venkataramani C, Kaplan JA, Portell A, Gokhale PC, Phillips B, Smart A, Rotem A, Jones RE, Keogh L, Anguiano M, Stapleton L, Jia Z, Barzily-Rokni M, Cañadas I, Thai TC, Hammond MR, Vlahos R, Wang ES, Zhang H, Li S, Hanna GJ, Huang W, Hoang MP, Piris A, Eliane JP, Stemmer-Rachamimov AO, Cameron L, Su MJ, Shah P, Izar B, Thakuria M, LeBoeuf NR, Rabinowits G, Gunda V, Parangi S, Cleary JM, Miller BC, Kitajima S, Thummalapalli R, Miao B, Barbie TU, Sivathanu V, Wong J, Richards WG, Bueno R, Yoon CH, Miret J, Herlyn M, Garraway LA, Van Allen EM, Freeman GJ, Kirschmeier PT, Lorch JH, Ott PA, Stephen Hodi F, Flaherty KT, Kamm RD, Boland GM, Wong KK, Dornan D, Paweletz CP, Barbie DA (2018) Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov 8:196

    Google Scholar 

  • Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX (2011) Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of Lapatinib insensitive breast cancer. Breast Cancer Res Treat 128:347

    Google Scholar 

  • Keenan BP, Jaffee EM (2012) Whole cell vaccines - past progress and future strategies. Semin Oncol 39:276

    Google Scholar 

  • Kim C, Kim JH, Kim JS, Chon HJ, Kim J-H (2019) A novel dual inhibitor of IDO and TDO, CMG017, potently suppresses the kynurenine pathway and overcomes resistance to immune checkpoint inhibitors. J Clin Oncol 37:e14228

    Google Scholar 

  • Kreiter S, Vormehr M, Van De Roemer N, Diken M, Löwer M, Diekmann J, Boegel S, Schrörs B, Vascotto F, Castle JC, Tadmor AD, Schoenberger SP, Huber C, TĂĽreci O, Sahin U (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692

    Google Scholar 

  • Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, White C, Lowe C, Sherba JJ, Hartmanshenn C, O’Neill KM, Balter ML, Fritz ZR, Androulakis IP, Schloss RS, Yarmush ML (2018) The growing role of precision and personalized medicine for cancer treatment. Technology 6:79

    Google Scholar 

  • Kumar C, Kohli S, Chiliveru S, Bapsy PP, Jain M, Attili VSS, Mohan J, Vaid AK, Sharan B (2017) A retrospective analysis comparing APCEDEN® dendritic cell immunotherapy with best supportive care in refractory cancer. Immunotherapy 9:889

    Google Scholar 

  • Lee V, Murphy A, Le DT, Diaz LA (2016) Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist 21:1200

    Google Scholar 

  • Lee WS, Yang H, Chon HJ, Kim C (2020) Combination of anti-Angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 52:1475

    Google Scholar 

  • Li L, Goedegebuure SP, Gillanders WE (2017) Preclinical and clinical development of neoantigen vaccines. Ann Oncol 28:xii11

    Google Scholar 

  • Li BT, Michelini F, Misale S, Cocco E, Baldino L, Cai Y, Shifman S, Tu HY, Myers ML, Xu C, Mattar M, Khodos I, Little M, Qeriqi B, Weitsman G, Wilhem CJ, Lalani AS, Diala I, Freedman RA, Lin NU, Solit DB, Berger MF, Barber PR, Ng T, Offin M, Isbell JM, Jones DR, Yu HA, Thyparambil S, Liao WL, Bhalkikar A, Cecchi F, Hyman DM, Lewis JS, Buonocore DJ, Ho AL, Makker V, Reis-Filho JS, Razavi P, Arcila ME, Kris MG, Poirier JT, Shen R, Tsurutani J, Ulaner GA, de Stanchina E, Rosen N, Rudin CM, Scaltriti M (2020) Her2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Cancer Discov 10:674

    Google Scholar 

  • Li F, Li C, Cai X, Xie Z, Zhou L, Cheng B, Zhong R, Xiong S, Li J, Chen Z, Yu Z, He J, Liang W (2021a) The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: a systematic review and meta-analysis. EClinicalMedicine 41:101134

    Google Scholar 

  • Li WQ, Guo HF, Li LY, Zhang YF, Cui JW (2021b) The promising role of antibody drug conjugate in cancer therapy: combining targeting ability with cytotoxicity effectively. Cancer Med 10:4677

    Google Scholar 

  • Liu XS, Mardis ER (2017) Applications of immunogenomics to cancer. Cell 168:600

    Google Scholar 

  • Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH, Italiano A, Kao S, Piha-Paul SA, Delord JP, McWilliams RR, Fabrizio DA, Aurora-Garg D, Xu L, Jin F, Norwood K, Bang YJ (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21:1353

    Google Scholar 

  • Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE (2019) Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol 10:766

    Google Scholar 

  • Mckertish CM, Kayser V (2021) Advances and limitations of antibody drug conjugates for cancer. Biomedicine 9:872

    Google Scholar 

  • Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469

    Google Scholar 

  • Mukherjee S (2019) Genomics-guided immunotherapy for precision medicine in cancer. Cancer Biother Radiopharm 34:487

    Google Scholar 

  • Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, Deutsch BC, Liao L, Zemek AJ, Zhao F, Karlsson K, Schultz LM, Metzner TJ, Nadauld LD, Tseng YY, Alkhairy S, Oh C, Keskula P, Mendoza-Villanueva D, De La Vega FM, Kunz PL, Liao JC, Leppert JT, Sunwoo JB, Sabatti C, Boehm JS, Hahn WC, Zheng GXY, Davis MM, Kuo CJ (2018) Organoid modeling of the tumor immune microenvironment. Cell 175:1972

    Google Scholar 

  • Nixon AB, Schalper KA, Jacobs I, Potluri S, Wang IM, Fleener C (2019) Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J Immunother Cancer 7:1

    Google Scholar 

  • Oh B, Boyle F, Pavlakis N, Clarke S, Eade T, Hruby G, Lamoury G, Carroll S, Morgia M, Kneebone A, Stevens M, Liu W, Corless B, Molloy M, Kong B, Libermann T, Rosenthal D, Back M (2021) The gut microbiome and cancer immunotherapy: can we use the gut microbiome as a predictive biomarker for clinical response in cancer immunotherapy? Cancers (Basel). 13:4824

    Google Scholar 

  • Opzoomer JW, Sosnowska D, Anstee JE, Spicer JF, Arnold JN (2019) Cytotoxic chemotherapy as an immune stimulus: a molecular perspective on turning up the immunological heat on cancer. Front Immunol 10:1654

    Google Scholar 

  • Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5:16

    Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839

    Google Scholar 

  • Parlato S, Grisanti G, Sinibaldi G, Peruzzi G, Casciola CM, Gabriele L (2021) Tumor-on-a-chip platforms to study cancer–immune system crosstalk in the era of immunotherapy. Lab Chip 21:234

    Google Scholar 

  • Polini A, del Mercato LL, Barra A, Zhang YS, Calabi F, Gigli G (2019) Towards the development of human immune-system-on-a-chip platforms. Drug Discov Today 24:517

    Google Scholar 

  • Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158

    Google Scholar 

  • Proietti I, Skroza N, Michelini S, Mambrin A, Balduzzi V, Bernardini N, Marchesiello A, Tolino E, Volpe S, Maddalena P, Fraia M, Mangino G, Romeo G, Potenza C (2020) BRAF inhibitors: molecular targeting and immunomodulatory actions. Cancers (Basel) 12:1

    Google Scholar 

  • Ramadan Q, Zourob M (2020) Organ-on-a-chip engineering: toward bridging the gap between lab and industry. Biomicrofluidics 14:041501

    Google Scholar 

  • Ramos CA, Dotti G (2011) Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 11:855

    Google Scholar 

  • Redman JM, Hill EM, AlDeghaither D, Weiner LM (2015) Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 67:28

    Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124

    Google Scholar 

  • Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A, Ng C, Gallatin K, Cain T, Fan R, Mackay S, Heath JR, Rosenberg SA, Kochenderfer JN, Zhou J, Bot A (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132:804

    Google Scholar 

  • Simon R (2010) Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Per Med 7:33

    Google Scholar 

  • Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, Ali SM, Elvin JA, Singal G, Ross JS, Fabrizio D, Szabo PM, Chang H, Sasson A, Srinivasan S, Kirov S, Szustakowski J, Vitazka P, Edwards R, Bufill JA, Sharma N, Ou SHI, Peled N, Spigel DR, Rizvi H, Aguilar EJ, Carter BW, Erasmus J, Halpenny DF, Plodkowski AJ, Long NM, Nishino M, Denning WL, Galan-Cobo A, Hamdi H, Hirz T, Tong P, Wang J, Rodriguez-Canales J, Villalobos PA, Parra ER, Kalhor N, Sholl LM, Sauter JL, Jungbluth AA, Mino-Kenudson M, Azimi R, Elamin YY, Zhang J, Leonardi GC, Jiang F, Wong KK, Lee JJ, Papadimitrakopoulou VA, Wistuba II, Miller VA, Frampton GM, Wolchok JD, Shaw AT, Jänne PA, Stephens PJ, Rudin CM, Geese WJ, Albacker LA, Heymach J V (2018) STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 8:822

    Google Scholar 

  • Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19:65

    Google Scholar 

  • Spencer KR, Wang J, Silk AW, Ganesan S, Kaufman HL, Mehnert JM (2016) Biomarkers for immunotherapy: current developments and challenges. Am Soc Clin Oncol Educ Book 35:e493

    Google Scholar 

  • Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, Van Houdt W, Van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, Van Sluis P, Li VSW, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, Van Oudenaarden A, Saez-Rodriguez J, Vries RGJ, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933

    Google Scholar 

  • Vasseur A, Kiavue N, Bidard FC, Pierga JY, Cabel L (2021) Clinical utility of circulating tumor cells: an update. Mol Oncol 15:1647

    Google Scholar 

  • Vigneron N (2015) Human tumor antigens and cancer immunotherapy. Biomed Res Int 2015:948501

    Google Scholar 

  • Waldmann TA (2018) Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 10:a028472

    Google Scholar 

  • Walle T, Monge RM, Cerwenka A, Ajona D, Melero I, Lecanda F (2018) Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 10:1

    Google Scholar 

  • Wang Z, Cao YJ (2020) Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol 11:176

    Google Scholar 

  • Wei J, Feng J, Weng Y, Xu Z, Jin Y, Wang P, Cui X, Ruan P, Luo R, Li N, Peng M (2021) The prognostic value of CtDNA and BTMB on immune checkpoint inhibitors in human cancer. Front Oncol 11:3963

    Google Scholar 

  • Welters MJP, Kenter GG, Piersma SJ, Vloon APG, Löwik MJG, Berends-van Der Meer DMA, Drijfhout JW, Valentijn ARPM, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, Melief CJM, Van Der Burg SH (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178

    Google Scholar 

  • Xu Z, Wang X, Zeng S, Ren X, Yan Y, Gong Z (2021) Applying artificial intelligence for cancer immunotherapy. Acta Pharm Sin B 11:3393

    Google Scholar 

  • Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, Zhong J (2021) Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol 12:1297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abadi, B., Rezaei, N. (2023). Introduction on Personalized Immune-Oncology. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_286-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_286-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics