Skip to main content

Proteomics and Protein Biomarkers in Cancer Metastasis

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Although advances in genomics and transcriptomics techniques have led to significant improvements in cancer, proteomics techniques have recently become very important in cancer research. Proteomics has proven to be extremely useful and popular in cancer research, providing more comprehensive information on carcinogenesis and the identification of cancer-associated protein patterns. Although the effectiveness of clinical proteomics for patient management and clinical decision-making currently appears to be low, the search for cancer-related biomarkers using proteomics has a great potential for improving risk assessment, early detection, diagnosis, prognosis, treatment selection, and surveillance. Proteomics is a collection of technologies that focuses on all forms of proteins expressed in a cell, organ, or organism as a function of time, age, situation, and external factors. It plays an important role as a bridge between genomics and biology by providing information about what actually happens in the organism. As a result, there is an increasing interest in the use of proteomics techniques in cancer research. This section provides a detailed summary of proteomics technologies and applications used in current cancer research. However, this chapter also reviews an overview of lessons learned from currently validated protein biomarkers and previous proteomics research, what the limitations and challenges are in clinical proteomics applications, and how proteomics studies can be successfully transformed into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abajian A, Murali N, Savic LJ, Laage-Gaupp FM, Nezami N, Duncan JS et al (2018) Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept. J Vasc Interv Radiol 29(6):850–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Google Scholar 

  • Almendro V, Marusyk A, Polyak K (2013) Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol Mech Dis 8:277–302

    Article  CAS  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861

    Google Scholar 

  • Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chemical Society Reviews 41(10):3912–3928

    Google Scholar 

  • Azuaje F, Kim SY, Perez Hernandez D, Dittmar G (2019) Connecting histopathology imaging and proteomics in kidney cancer through machine learning. J Clin Med 8(10):1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai YH, Zhan YB, Yu B, Wang WW, Wang L, Zhou JQ et al (2018) A novel tumor-suppressor, CDH18, inhibits glioma cell invasiveness via UQCRC2 and correlates with the prognosis of glioma patients. Cell Physiol Biochem 48(4):1755–1770

    Article  CAS  PubMed  Google Scholar 

  • Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Silberring J (2007) Methods for samples preparation in proteomic research. Journal of Chromatography B 849(1):1–31

    Google Scholar 

  • Brünner N, Holten-Andersen M, Sweep F, Foekens J, Schmitt M, Duffy MJ (2008) New tumor biomarkers. Cancer Proteomics Humana Press, pp 189–207

    Google Scholar 

  • Budnik B, Levy E, Harmange G, Slavov N (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19(1):1–12

    Article  Google Scholar 

  • Carter B, Zhao K (2021) The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22(4):235–250

    Article  CAS  PubMed  Google Scholar 

  • Chandran VI, Welinder C, Månsson AS, Offer S, Freyhult E, Pernemalm M et al (2019) Ultrasensitive immunoprofiling of plasma extracellular vesicles identifies syndecan-1 as a potential tool for minimally invasive diagnosis of glioma. Clin Cancer Res 25(10):3115–3127

    Article  CAS  Google Scholar 

  • Cho WC (2007) Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 6(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J (2018) The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics 17(10):1948–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y et al (2019) Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179(4):964–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y et al (2020) Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 180(1):207

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Pinheiro P, Montezuma D, Henrique R, Jerónimo C (2015) Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics 7(6):1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Cree IA, Uttley L, Woods HB, Kikuchi H, Reiman A, Harnan S et al (2017) The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review. BMC Cancer 17(1):1–17

    Article  Google Scholar 

  • D’Amore B, Smolinski-Zhao S, Daye D, Uppot RN (2021) Role of machine learning and artificial intelligence in interventional oncology. Curr Oncol Rep 23(6):1–8

    Article  Google Scholar 

  • Daoud SS (ed) (2007) Cancer proteomics: from bench to bedside

    Google Scholar 

  • Deracinois B, Flahaut C, Duban-Deweer S, Karamanos Y (2013) Comparative and quantitative global proteomics approaches: an overview. Proteomes 1(3):180–218

    Google Scholar 

  • Diamandis EP (2002) Tumor markers: past, present, and future. In: Diamandis EP, Fritsche H Jr, Lilja H, Chan D, Schwartz M (eds) Tumor markers: physiology, pathobiology, technology, and clinical applications. American Association for Clinical Chemistry (AACC) Press, Washington, DC, pp 3–8

    Google Scholar 

  • Doll S, Gnad F, Mann M (2019) The case for proteomics and phospho-proteomics in personalized cancer medicine. Proteom Clin Appl 13(2):1800113

    Article  Google Scholar 

  • Donnelly N, Storchová Z (2014) Dynamic karyotype, dynamic proteome: buffering the effects of aneuploidy. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1843(2):473–481

    Article  CAS  Google Scholar 

  • Dou Y, Kawaler EA, Zhou DC, Gritsenko MA, Huang C, Blumenberg L et al (2020) Proteogenomic characterization of endometrial carcinoma. Cell 180(4):729–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy MJ (2005) Predictive markers in breast and other cancers: a review. Clin Chem 51(3):494–503

    Article  CAS  PubMed  Google Scholar 

  • Duffy MJ (2020) Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med (CCLM) 58(3):326–339

    Article  CAS  PubMed  Google Scholar 

  • Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M (2014) uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res 16(4):1–10

    Article  Google Scholar 

  • Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S et al (2019) Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569(7758):723–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S et al (2015) The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res 14(6):2707–2713

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Google Scholar 

  • Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z et al (2019) Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179(2):561–577

    Article  CAS  PubMed  Google Scholar 

  • Gezici S (2017) Proteomics techniques and their applications in cancer research. Türk Bilimsel Derlemeler Dergisi 10(2):54–61

    Google Scholar 

  • Gezici S, Ozaslan M, Akpinar G, Kasap M, Sanli M, Elbeyli L (2017) Comparative proteomics and bioinformatics analysis of tissue from non-Small cell lung cancer patients. Curr Proteom 14(1):58–77

    Article  CAS  Google Scholar 

  • Gonçalves E, Fragoulis A, Garcia-Alonso L, Cramer T, Saez-Rodriguez J, Beltrao P (2017) Widespread post-transcriptional attenuation of genomic copy-number variation in cancer. Cell Syst 5(4):386–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Groth SFDS, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochimica et Biophysica Acta 71:377–391

    Google Scholar 

  • Gupta MK, Polisetty RV, Sharma R, Ganesh RA, Gowda H, Purohit AK et al (2019) Altered transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of tumor invasion. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Hallal S, Russell BP, Wei H, Lee MYT, Toon CW, Sy J et al (2019) Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance. Proteomics 19(1–2):1800157

    Article  Google Scholar 

  • Han C, Lu X, Nagrath D (2018) Regulation of protein metabolism in cancer. Mol Cell Oncol 5(5):e1285384

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. cell 100(1):57–70

    Google Scholar 

  • Hao P, Guo T, Li X, Adav SS, Yang J, Wei M, Sze SK (2010) Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome. Journal of Proteome Research 9(7):3520–3526

    Google Scholar 

  • Hardcastle JD, Chamberlain JO, Robinson MH, Moss SM, Amar SS, Balfour TW et al (1996) Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 348(9040):1472–1477

    Article  CAS  PubMed  Google Scholar 

  • Hayes DF, Bast RC, Desch CE, Fritsche H Jr, Kemeny NE, Jessup JM et al (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. JNCI J Natl Cancer Inst 88(20):1456–1466

    Article  CAS  PubMed  Google Scholar 

  • Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holten-Andersen MN, Stephens RW, Nielsen HJ, Murphy G, Christensen IJ, Stetler-Stevenson W, Brünner N (2000) High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res 6(11):4292–4299

    CAS  PubMed  Google Scholar 

  • Honda K, Ono M, Shitashige M, Masuda M, Kamita M, Miura N, Yamada T (2013) Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn J Clin Oncol 43(2):103–109

    Article  PubMed  Google Scholar 

  • Huang S, Yang J, Fong S, Zhao Q (2020) Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett 471:61–71

    Article  CAS  PubMed  Google Scholar 

  • Huss R (2015) Biomarkers. In: Translational regenerative medicine. Academic, pp 235–241

    Chapter  Google Scholar 

  • Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R et al (2021) Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int 21(1):1–11

    Article  Google Scholar 

  • Jain KK (2008a) Innovations, challenges and future prospects of oncoproteomics. Mol Oncol 2(2):153–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain KK (2008b) Oncoproteomics for personalized management of cancer. In: Cancer proteomics. Humana Press, pp 81–99

    Chapter  Google Scholar 

  • Jänicke F, Prechtl A, Thomssen C, Harbeck N, Meisner C, Untch M et al (2001) Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst 93(12):913–920

    Article  PubMed  Google Scholar 

  • Jeon S, Kim DW, Lee DB, Cho JY (2020) NEDD4 plays roles in the maintenance of breast cancer stem cell characteristics. Front Oncol:1680

    Google Scholar 

  • Jiang CY, Niu Z, Green MD, Zhao L, Raupp S, Pannecouk B et al (2021) It’s not ‘just a tube of blood’: principles of protocol development, sample collection, staffing and budget considerations for blood-based biomarkers in immunotherapy studies. J Immunother Cancer 9(7)

    Google Scholar 

  • Joshi S, Tiwari AK, Mondal B, Sharma A (2011) Oncoproteomics. Clin Chim Acta 412(3–4):217–226

    Article  CAS  PubMed  Google Scholar 

  • Kang UB (2021) Proteomic interrogation in cancer biomarker. In: Translational research in breast cancer. Springer, Singapore, pp 305–322

    Chapter  Google Scholar 

  • Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E (2021) Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduction and Targeted Therapy 6(1):323

    Google Scholar 

  • Kellogg RA, Dunn J, Snyder MP (2018) Personal omics for precision health. Circ Res 122(9):1169–1171

    Article  CAS  PubMed  Google Scholar 

  • Kelly RT (2020) Single-cell proteomics: progress and prospects. Mol Cell Proteomics 19(11):1739–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadir A, Tiss A (2013) Proteomics approaches towards early detection and diagnosis of cancer. J Carcinogene Mutagene S14

    Google Scholar 

  • Kim M, Tagkopoulos I (2018) Data integration and predictive modeling methods for multi-omics datasets. Mol Omics 14(1):8–25

    Article  CAS  PubMed  Google Scholar 

  • Kočevar N, Hudler P, Komel R (2013) The progress of proteomic approaches in searching for cancer biomarkers. New Biotechnol 30(3):319–326

    Article  Google Scholar 

  • Koh EY, You JE, Jung SH, Kim PH (2020) Biological functions and identification of novel biomarker expressed on the surface of breast cancer-derived cancer stem cells via proteomic analysis. Mol Cells 43(4):384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H, Nagle JM et al (2016) LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539(7629):390–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug K, Mertins P, Zhang B, Hornbeck P, Raju R, Ahmad R et al (2019) A curated resource for Phosphosite-specific signature analysis*[S]. Mol Cell Proteomics 18(3):576–593

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kennecke HF, Renouf DJ, Lim HJ, Gill S, Woods R et al (2015) Adjuvant chemotherapy use and outcomes of patients with high-risk versus low-risk stage II colon cancer. Cancer 121(4):527–534

    Article  PubMed  Google Scholar 

  • Kustatscher G, Grabowski P, Rappsilber J (2017) Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol Syst Biol 13(8):937

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D (2020) Exosomal microRNAs as mediators of cellular interactions between cancer cells and macrophages. Frontiers in immunology 11:1167

    Google Scholar 

  • Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, Yoon JH (2021) Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front Med 8

    Google Scholar 

  • Labib M, Kelley SO (2020) Single-cell analysis targeting the proteome. Nat Rev Chem 4(3):143–158

    Article  PubMed  Google Scholar 

  • Le Large TYS, El Hassouni B, Funel N, Kok B, Piersma SR, Pham TV et al (2019) Proteomic analysis of gemcitabine-resistant pancreatic cancer cells reveals that microtubule-associated protein 2 upregulation associates with taxane treatment. Therap Adv Med Oncol 11:1758835919841233

    Google Scholar 

  • Leone RD, Powell JD (2020) Metabolism of immune cells in cancer. Nat Rev Cancer 20(9):516–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy E, Slavov N (2018) Single cell protein analysis for systems biology. Essays Biochem 62(4):595–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR et al (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178(2):316–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JC, Liu TP, Andriani V, Athoillah M, Wang CY, Yang PM (2021) Bioinformatics analysis identifies precision treatment with paclitaxel for hepatocellular carcinoma patients harboring mutant tp53 or wild-type ctnnb1 gene. J Personal Medi 11(11):1199

    Article  Google Scholar 

  • Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3):535–550

    Article  CAS  PubMed  Google Scholar 

  • Londhe VY, Bhasin B (2019) Artificial intelligence and its potential in oncology. Drug Discov Today 24(1):228–232

    Article  PubMed  Google Scholar 

  • Madeddu C, Maccio A, Mantovani G (2011) Metabolic changes in cancer patients. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents) 10(4):281–285

    Article  CAS  Google Scholar 

  • Maes E, Mertens I, Valkenborg D, Pauwels P, Rolfo C, Baggerman G (2015) Proteomics in cancer research: are we ready for clinical practice? Crit Rev Oncol Hematol 96(3):437–448

    Article  PubMed  Google Scholar 

  • Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol 27(24):4027

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruvada P, Wang W, Wagner PD, Srivastava S (2005) Biomarkers in molecular medicine: cancer detection and diagnosis. BioTechniques 38(S4):S9–S15

    Article  Google Scholar 

  • Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P (2014) Proteomics in investigation of cancer metastasis: functional and clinical consequences and methodological challenges. Proteomics 14(4–5):426–440

    Article  PubMed  Google Scholar 

  • Merril CR, Switzer RC, Van Keuren ML (1979) Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proceedings of the National Academy of Sciences 76(9):4335–4339

    Google Scholar 

  • Minden JS, Dowd SR, Meyer HE, Stühler K (2009) Difference gel electrophoresis. Electrophoresis 30(S1):S156–S161

    Google Scholar 

  • Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H et al (2018) Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One 13(3):e0193799

    Article  PubMed  PubMed Central  Google Scholar 

  • Mun DG, Bhin J, Kim S, Kim H, Jung JH, Jung Y et al (2019) Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 35(1):111–124

    Article  CAS  PubMed  Google Scholar 

  • Myers SA, Rhoads A, Cocco AR, Peckner R, Haber AL, Schweitzer LD et al (2019) Streamlined protocol for deep proteomic profiling of FAC-sorted cells and its application to freshly isolated murine immune cells. Mol Cell Proteomics 18(5):995–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Y, Zhang F, An M, Yin W, Gao Y (2018) Early candidate biomarkers found from urine of glioblastoma multiforme rat before changes in MRI. Sci China Life Sci 61:1–6

    Article  Google Scholar 

  • Nicolini A, Ferrari P, Masoni MC, Fini M, Pagani S, Giampietro O, Carpi A (2013) Malnutrition, anorexia and cachexia in cancer patients: a mini-review on pathogenesis and treatment. Biomed Pharmacother 67(8):807–817

    Article  CAS  PubMed  Google Scholar 

  • Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER III, Kalocsay M et al (2020) Quantitative proteomics of the cancer cell line encyclopedia. Cell 180(2):387–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obradović M, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux MM et al (2019) Glucocorticoids promote breast cancer metastasis. Nature 567(7749):540–544

    Article  PubMed  Google Scholar 

  • Okawa S, Gagrica S, Blin C, Ender C, Pollard SM, Krijgsveld J (2017) Proteome and secretome characterization of glioblastoma-derived neural stem cells. Stem Cells 35(4):967–980

    Article  CAS  PubMed  Google Scholar 

  • Oldenhuis CNAM, Oosting SF, Gietema JA, De Vries EGE (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44(7):946–953

    Article  CAS  PubMed  Google Scholar 

  • Pastwa E, Somiari SB, Czyz M, Somiari RI (2007) Proteomics in human cancer research. Proteomics Clin Appl 1(1):4–17

    Article  CAS  PubMed  Google Scholar 

  • Patel PS, Telang SD, Rawal RM, Shah MH (2005) A review of proteomics in cancer research. Asian Pac J Cancer Prev 6(2):113–117

    PubMed  Google Scholar 

  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. Journal of Proteome Research 2(1):43–50

    Google Scholar 

  • Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. Journal of Proteomics 74(10):1829–1841

    Google Scholar 

  • Raffel S, Klimmeck D, Falcone M, Demir A, Pouya A, Zeisberger P et al (2020) Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood 136(13):1507–1519

    Article  PubMed  Google Scholar 

  • Rassy E, Assi T, Pavlidis N (2020) Exploring the biological hallmarks of cancer of unknown primary: where do we stand today?. British journal of cancer 122(8):1124–1132

    Google Scholar 

  • Raynie DE (2010) Modern extraction techniques. Analytical Chemistry 82(12):4911–4916

    Google Scholar 

  • Riederer BM (2008) Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. Journal of Proteomics 71(2):231–244

    Google Scholar 

  • Ruhen O, Meehan K (2019) Tumor-derived extracellular vesicles as a novel source of protein biomarkers for cancer diagnosis and monitoring. Proteomics 19(1–2):1800155

    Article  Google Scholar 

  • Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135(10):2496–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam RM (2015) Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers 2015:1–12

    Article  Google Scholar 

  • Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE et al (2022) A knowledge graph to interpret clinical proteomics data. Nat Biotechnol 40:1–11

    Article  Google Scholar 

  • Selby JV, Friedman GD, Quesenberry CP Jr, Weiss NS (1992) A case–control study of screening sigmoidoscopy and mortality from colorectal cancer. N Engl J Med 326(10):653–657

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Qi L, Zou Z, Du J, Kong W, Zhao L et al (2020) Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases. Sci Rep 10(1):1–9

    CAS  Google Scholar 

  • Shenoy A, Belugali Nataraj N, Perry G, Loayza Puch F, Nagel R, Marin I et al (2020) Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol 16(9):e9443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, ... & Jemal A (2020) Colorectal cancer statistics, 2020. CA: a cancer journal for clinicians, 70(3):145–164

    Google Scholar 

  • Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N et al (2019) The proteogenomic landscape of curable prostate cancer. Cancer Cell 35(3):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small EJ, Roach M III (2002) Prostate-specific antigen in prostate cancer: a case study in the development of a tumor marker to monitor recurrence and assess response. Seminars in oncology 29(3):264–273. WB Saunders

    Article  CAS  PubMed  Google Scholar 

  • Srinivas PR, Srivastava S, Hanash S, Wright GL Jr (2001) Proteomics in early detection of cancer. Clin Chem 47(10):1901–1911

    Article  CAS  PubMed  Google Scholar 

  • Srinivas PR, Verma M, Zhao Y, Srivastava S (2002) Proteomics for cancer biomarker discovery. Clin Chem 48(8):1160–1169

    CAS  PubMed  Google Scholar 

  • Srivastava A, Creek DJ (2019) Discovery and validation of clinical biomarkers of cancer: a review combining metabolomics and proteomics. Proteomics 19(10):1700448

    Article  Google Scholar 

  • Suzuki H, Asakawa A, Amitani H, Fujitsuka N, Nakamura N, Inui A (2013) Cancer cachexia pathophysiology and translational aspect of herbal medicine. Jpn J Clin Oncol 43(7):695–705

    Article  PubMed  Google Scholar 

  • Tan HT, Lee YH, Chung MC (2012) Cancer proteomics. Mass Spectrom Rev 31(5):583–605

    Article  CAS  PubMed  Google Scholar 

  • Tătaru OS, Vartolomei MD, Rassweiler JJ, Virgil O, Lucarelli G, Porpiglia F et al (2021) Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives. Diagnostics 11(2):354

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B et al (2019) Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177(4):1035–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther TC, Mann M (2010) Mass spectrometry–based proteomics in cell biology. The Journal of Cell Biology 190(4):491–500

    Google Scholar 

  • Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28(6):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Liu X, Cheng C, Yu W, Yi P (2021) Metabolism of amino acids in cancer. Front Cell Develop Biol 1628

    Google Scholar 

  • Wu C, Zhou F, Ren J, Li X, Jiang Y, Ma S (2019) A selective review of multi-level omics data integration using variable selection. High-Throughput 8(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. Journal of Biological Chemistry 286(29):25443–25449

    Google Scholar 

  • Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 88(20):4451–4459

    Google Scholar 

  • Yi L, Tsai CF, Dirice E, Swensen AC, Chen J, Shi T et al (2019) Boosting to amplify signal with isobaric labeling (BASIL) strategy for comprehensive quantitative phosphoproteomic characterization of small populations of cells. Anal Chem 91(9):5794–5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z (2012) An in vitro diagnostic multivariate index assay (IVDMIA) for ovarian cancer: harvesting the power of multiple biomarkers. Rev Obstet Gynecol 5(1):35

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J et al (2011) International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data. Database

    Google Scholar 

  • Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H et al (2019) The international cancer genome consortium data portal. Nat Biotechnol 37(4):367–369

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Bailey MJ, Dunn MJ, Preedy VR, Emery PW (2005) A quantitative investigation into the losses of proteins at different stages of a two‐dimensional gel electrophoresis procedure. Proteomics 5(11):2739–2747

    Google Scholar 

  • Zhou L, Li Q, Wang J, Huang C, Nice EC (2016) Oncoproteomics: trials and tribulations. Proteomics Clin Appl 10(4):516–515

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Financial Disclosure

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevgi Gezici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gezici, S. (2023). Proteomics and Protein Biomarkers in Cancer Metastasis. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics