Skip to main content

Peripheral Arterial Disease

  • Reference work entry
  • First Online:
Geriatric Medicine
  • 354 Accesses

Abstract

Peripheral arterial disease is common yet underdiagnosed particularly in the aging population. Even when asymptomatic, PAD is associated with progressive functional decline and represents a coronary artery disease equivalent for major cardiovascular events. Diagnostic evaluation includes a thorough pulse exam and noninvasive studies (e.g., ankle brachial index) to establish the presence and severity of arterial occlusive disease. Treatment for PAD is focused on risk factor modification with medical therapy for cardiovascular risk factors, smoking cessation, diet, and exercise with an emphasis on walking. Further imaging is only necessary when vascular intervention is being considered. Surgical or interventional treatment is guided by symptoms and is tailored to individual goals and preferences. Specific tools have been developed to help guide treatment decisions that take into account clinical presentation, revascularization efficacy, likelihood of amputation, and functional reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dhaliwal G, Mukherjee D. Peripheral arterial disease: epidemiology, natural history, diagnosis and treatment. Int J Angiol. 2007;16(2):36–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davies MG. Criticial limb ischemia: epidemiology. Methodist Debakey Cardiovasc J. 2012;8(4):10–4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fowkes FGR, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40.

    Article  PubMed  Google Scholar 

  4. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    Article  CAS  PubMed  Google Scholar 

  5. Savji N, Rockman CB, Skolnick AH, Guo Y, Adelman MA, Riles T, et al. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61(16):1736–43.

    Article  PubMed  Google Scholar 

  6. CDC National Health Report. Leading causes of morbidity and mortality and associated behavioral risk and protective factors – United States, 2005–2013 [Internet]. [cited 2020 Nov 13]. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/su6304a2.htm

  7. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300(2):197–208.

    Google Scholar 

  8. Mahoney EM, Kaijun W, Cohen DJ, Hirsch AT, Alberts MJ, Kim E, et al. One-year costs in patients with a history of or at risk for atherothrombosis in the United States. Circ Cardiovasc Qual Outcomes. 2008;1(1):38–45.

    Article  PubMed  Google Scholar 

  9. Stary HC, Bleakley CA, Dinsmore RE, Valentin F, Seymour G, William I, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation. 1995;92(5):1355–74.

    Article  CAS  PubMed  Google Scholar 

  10. Ross R. Atherosclerosis – an inflammatory disease [Internet]. Massachusetts Medical Society; 2008 [cited 2020 Sep 4]. Available from: https://doi.org/10.1056/NEJM199901143400207.

  11. Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv. 2014;83(6):E212–20.

    Article  PubMed  Google Scholar 

  12. Gokce N, Keaney JF, Hunter LM, Watkins MT, Menzoian JO, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation. 2002;105(13):1567–72.

    Article  PubMed  Google Scholar 

  13. Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation. 2008;117(8):993–1002.

    Article  PubMed  Google Scholar 

  14. Nehler MR, Duval S, Diao L, Annex BH, Hiatt WR, Rogers K, et al. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J Vasc Surg. 2014;60(3):686–695.e2.

    Article  PubMed  Google Scholar 

  15. Miller AP, Huff CM, Roubin GS. Vascular disease in the older adult. J Geriatr Cardiol JGC. 2016;13(9):727–32.

    PubMed  Google Scholar 

  16. Hirsch AT, Allison MA, Gomes AS, Corriere MA, Duval S, Ershow AG, et al. A call to action: women and peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2012;125(11):1449–72.

    Article  PubMed  Google Scholar 

  17. Centers for Disease Control and Prevention (CDC). Diabetes-related amputations of lower extremities in the Medicare population – Minnesota, 1993–1995. MMWR Morb Mortal Wkly Rep. 1998;47(31):649–52.

    Google Scholar 

  18. Millán J, Pintó X, Muñoz A, Zúñiga M, Rubiés-Prat J, Pallardo LF, et al. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009;5:757–65.

    PubMed  PubMed Central  Google Scholar 

  19. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118(4):547–63.

    Article  CAS  PubMed  Google Scholar 

  20. Kianoush S, Yawar YM, Mahmoud A-R, DeFilippis AP, Bittencourt MS, Duncan Bruce B, et al. Associations of cigarette smoking with subclinical inflammation and atherosclerosis: ELSA-Brasil (The Brazilian Longitudinal Study of Adult Health). J Am Heart Assoc. 6(6):e005088.

    Google Scholar 

  21. Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005.

    Article  PubMed  Google Scholar 

  22. Medical Marijuana, Recreational Cannabis, and Cardiovascular Health. A scientific statement from the American Heart Association | Circulation [Internet]. [cited 2020 Nov 16]. Available from: https://www.ahajournals.org/doi/full/10.1161/CIR.0000000000000883

  23. Katsiki N, Papadopoulou SK, Fachantidou AI, Mikhailidis DP. Smoking and vascular risk: are all forms of smoking harmful to all types of vascular disease? Public Health. 2013;127(5):435–41.

    Article  CAS  PubMed  Google Scholar 

  24. Hughes K, Boyd C, Oyetunji T, Tran D, Chang D, Rose D, et al. Racial/ethnic disparities in revascularization for limb salvage: an analysis of the national surgical quality improvement program database. Vasc Endovasc Surg. 2014;48(5–6):402–5.

    Article  Google Scholar 

  25. Stapleton SM, Bababekov YJ, Perez NP, Fong ZV, Hashimoto DA, Lillemoe KD, et al. Variation in amputation risk for Black patients: uncovering potential sources of bias and opportunities for intervention. J Am Coll Surg. 2018;226(4):641–649.e1.

    Article  PubMed  Google Scholar 

  26. Hawkins RB, Charles EJ, Mehaffey JH, Williams CA, Robinson WP, Upchurch GR, et al. Socioeconomic distressed communities index associated with worse limb-related outcomes after infrainguinal bypass. J Vasc Surg. 2019;70(3):786–794.e2.

    Article  PubMed  Google Scholar 

  27. Hawkins RB, Mehaffey JH, Charles EJ, Kern JA, Schneider EB, Tracci MC. Socioeconomically distressed communities index independently predicts major adverse limb events after infrainguinal bypass in a national cohort. J Vasc Surg. 2019;70(6):1985–1993.e8.

    Article  PubMed  Google Scholar 

  28. Living in a Food Desert is associated with 30-day readmission after revascularization for chronic limb-threatening ischemia. Ann Vasc Surg [Internet]. [cited 2020 Aug 31]. Available from: https://www.annalsofvascularsurgery.com/article/S0890-5096(20)30553-7/fulltext

  29. Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet. 1990;24:133–70.

    Article  CAS  PubMed  Google Scholar 

  30. Rupprecht HJ, Blankenberg S, Bickel C, Rippin G, Hafner G, Prellwitz W, et al. Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation. 2001;104(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  31. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR, Sacco RL, et al. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation. 2005;111(5):576–82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee D-H, Lind PM, Jacobs DR, Salihovic S, van Bavel B, Lind L. Background exposure to persistent organic pollutants predicts stroke in the elderly. Environ Int. 2012;47:115–20.

    Article  CAS  PubMed  Google Scholar 

  33. Turunen AW, Jula A, Suominen AL, Männistö S, Marniemi J, Kiviranta H, et al. Fish consumption, omega-3 fatty acids, and environmental contaminants in relation to low-grade inflammation and early atherosclerosis. Environ Res. 2013;120:43–54.

    Article  CAS  PubMed  Google Scholar 

  34. McDaniel MD, Cronenwett JL. Basic data related to the natural history of intermittent claudication. Ann Vasc Surg. 1989;3(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  35. Aquino R, Johnnides C, Makaroun M, Whittle JC, Muluk VS, Kelley ME, et al. Natural history of claudication: long-term serial follow-up study of 1244 claudicants. J Vasc Surg. 2001;34(6):962–70.

    Article  CAS  PubMed  Google Scholar 

  36. Gardner AW, Montgomery PS, Killewich LA. Natural history of physical function in older men with intermittent claudication. J Vasc Surg. 2004;40(1):73–8.

    Article  PubMed  Google Scholar 

  37. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes Neal R, Corriere Matthew A, Drachman Douglas E, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e686–725.

    PubMed  Google Scholar 

  38. Aboyans V, Criqui Michael H, Abraham P, Allison Matthew A, Creager Mark A, Curt D, et al. Measurement and interpretation of the ankle-brachial index. Circulation. 2012;126(24):2890–909.

    Article  PubMed  Google Scholar 

  39. Ankle Brachial Index Collaboration, Fowkes FGR, Murray GD, Butcher I, Heald CL, Lee RJ, et al. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300(2):197–208.

    Article  PubMed Central  Google Scholar 

  40. Salaun P, Desormais I, Lapébie F-X, Rivière AB, Aboyans V, Lacroix P, et al. Comparison of ankle pressure, systolic toe pressure, and transcutaneous oxygen pressure to predict major amputation after 1 year in the COPART cohort. Angiology. 2019;70(3):229–36.

    Article  PubMed  Google Scholar 

  41. Hinchliffe RJ, Brownrigg JRW, Apelqvist J, Boyko EJ, Fitridge R, Mills JL, et al. IWGDF guidance on the diagnosis, prognosis and management of peripheral artery disease in patients with foot ulcers in diabetes. Diabetes Metab Res Rev. 2016;32(Suppl 1):37–44.

    Article  PubMed  Google Scholar 

  42. Misra S, Shishehbor MH, Takahashi EA, Aronow HD, Brewster LP, Bunte MC, et al. Perfusion assessment in critical limb ischemia: principles for understanding and the development of evidence and evaluation of devices: a scientific statement from the American Heart Association. Circulation. 2019;140(12):e657–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Conte MS, Pomposelli FB, Clair DG, Geraghty PJ, McKinsey JF, Mills JL, et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3, Supplement):2S–41S.e1.

    Article  PubMed  Google Scholar 

  44. US Preventive Services Task Force, Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, et al. Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle-brachial index: US preventive services task force recommendation statement. JAMA. 2018;320(2):177–83.

    Article  Google Scholar 

  45. McDermott MM, Liu K, Greenland P, Guralnik JM, Criqui MH, Chan C, et al. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292(4):453–61.

    Article  CAS  PubMed  Google Scholar 

  46. McDermott MM. Functional impairment in peripheral artery disease and how to improve it in 2013. Curr Cardiol Rep. 2013;15(4):347.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Measurement and Interpretation of the Ankle-Brachial Index | Circulation [Internet]. [cited 2020 Jul 31]. Available from: https://www.ahajournals.org/doi/10.1161/CIR.0b013e318276fbcb?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

  48. Nordanstig J, Broeren M, Hensäter M, Perlander A, Österberg K, Jivegård L. Six-minute walk test closely correlates to “real-life” outdoor walking capacity and quality of life in patients with intermittent claudication. J Vasc Surg. 2014;60(2):404–9.

    Article  PubMed  Google Scholar 

  49. Sigvant B, Lundin F, Wahlberg E. The risk of disease progression in peripheral arterial disease is higher than expected: a meta-analysis of mortality and disease progression in peripheral arterial disease. Eur J Vasc Endovasc Surg. 2016;51(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  50. Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001;24(8):1433–7.

    Article  CAS  PubMed  Google Scholar 

  51. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–75.

    Article  PubMed  Google Scholar 

  52. Anand SS, Bosch J, Eikelboom JW, Connolly SJ, Diaz R, Widimsky P, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10117):219–29.

    Article  CAS  PubMed  Google Scholar 

  53. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg. 2019;58(1S):S1–S109.e33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bonaca MP, Bauersachs RM, Anand SS, Debus ES, Nehler MR, Patel MR, et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med. 2020;382(21):1994–2004.

    Article  CAS  PubMed  Google Scholar 

  55. Bedenis R, Stewart M, Cleanthis M, Robless P, Mikhailidis DP, Stansby G. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014;(10):CD003748.

    Google Scholar 

  56. McDermott MM, Liu K, Ferrucci L, Criqui MH, Greenland P, Guralnik JM, et al. Physical performance in peripheral arterial disease: a slower rate of decline in patients who walk more. Ann Intern Med. 2006;144(1):10–20.

    Article  PubMed  Google Scholar 

  57. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al. Supervised exercise, stent revascularization, or medical therapy for claudication due to Aortoiliac peripheral artery disease: the CLEVER study. J Am Coll Cardiol. 2015;65(10):999–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fakhry F, Spronk S, van der Laan L, Wever JJ, Teijink JAW, Hoffmann WH, et al. Endovascular revascularization and supervised exercise for peripheral artery disease and intermittent claudication: a randomized clinical trial. JAMA. 2015;314(18):1936–44.

    Article  CAS  PubMed  Google Scholar 

  59. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA. 1995;274(12):975–80.

    Article  CAS  PubMed  Google Scholar 

  60. Gardner AW, Parker DE, Montgomery PS, Blevins SM. Step-monitored home exercise improves ambulation, vascular function, and inflammation in symptomatic patients with peripheral artery disease: a randomized controlled trial. J Am Heart Assoc. 2014;3(5):e001107.

    Article  PubMed  PubMed Central  Google Scholar 

  61. McDermott MM, Spring B, Berger JS, Treat-Jacobson D, Conte MS, Creager MA, et al. Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease: the HONOR randomized clinical trial. JAMA. 2018;319(16):1665–76.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hiramoto JS, Teraa M, de Borst GJ, Conte MS. Interventions for lower extremity peripheral artery disease. Nat Rev Cardiol. 2018;15(6):332–50.

    Article  PubMed  Google Scholar 

  63. Jongkind V, Akkersdijk GJM, Yeung KK, Wisselink W. A systematic review of endovascular treatment of extensive aortoiliac occlusive disease. J Vasc Surg. 2010;52(5):1376–83.

    Article  PubMed  Google Scholar 

  64. Stern JR, Cafasso DE, Connolly PH, Ellozy SH, Schneider DB, Meltzer AJ. Safety and effectiveness of retrograde arterial access for endovascular treatment of critical limb ischemia. Ann Vasc Surg. 2019;(55):131–7.

    Google Scholar 

  65. Simons JP, Schanzer A, Flahive JM, Osborne NH, Mills JL, Bradbury AW, et al. Survival prediction in patients with chronic limb-threatening ischemia who undergo infrainguinal revascularization. Eur J Vasc Endovasc Surg. 2019;58(1S):S120–S134.e3.

    Article  PubMed  Google Scholar 

  66. Iannuzzi JC, Chandra A, Kelly KN, Rickles AS, Monson JRT, Fleming FJ. Risk score for unplanned vascular readmissions. J Vasc Surg. 2014;59(5):1340–1347.e1.

    Article  PubMed  Google Scholar 

  67. Iannuzzi JC, Boitano LT, Cooper MA, Watkins MT, Eagleton MJ, Clouse WD, et al. Risk score for nonhome discharge after lower extremity bypass. J Vasc Surg [Internet]. 2019 Sep 10 [cited 2019 Sep 18]. Available from: http://www.sciencedirect.com/science/article/pii/S0741521419318014

  68. Oresanya L, Zhao S, Gan S, Fries BE, Goodney PP, Covinsky KE, et al. Functional outcomes after lower extremity revascularization in nursing home residents a National Cohort Study. JAMA Intern Med. 2015;175(6):951–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Taylor SM, Kalbaugh CA, Blackhurst DW, Cass AL, Trent EA, Langan EM, et al. Determinants of functional outcome after revascularization for critical limb ischemia: an analysis of 1000 consecutive vascular interventions. J Vasc Surg. 2006;44(4):747–55; discussion 755–756

    Article  PubMed  Google Scholar 

  70. Biancari F, Salenius J-P, Heikkinen M, Luther M, Ylönen K, Lepäntalo M. Risk-scoring method for prediction of 30-day postoperative outcome after infrainguinal surgical revascularization for critical lower-limb ischemia: a Finnvasc registry study. World J Surg. 2007;31(1):217–25; discussion 226–227.

    Article  PubMed  Google Scholar 

  71. Schanzer A, Mega J, Meadows J, Samson RH, Bandyk DF, Conte MS. Risk stratification in critical limb ischemia: derivation and validation of a model to predict amputation-free survival using multicenter surgical outcomes data. J Vasc Surg. 2008;48(6):1464–71.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FGR, Gillespie I, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: a survival prediction model to facilitate clinical decision making. J Vasc Surg. 2010;51(5, Supplement):52S–68S.

    Article  PubMed  Google Scholar 

  73. Meltzer AJ, Graham A, Connolly PH, Meltzer EC, Karwowski JK, Bush HL, et al. The Comprehensive Risk Assessment for Bypass (CRAB) facilitates efficient perioperative risk assessment for patients with critical limb ischemia. J Vasc Surg. 2013;57(5):1186–95.

    Article  PubMed  Google Scholar 

  74. Soga Y, Iida O, Takahaera M, Hirano K, Suzuki K, Kawasaki D, et al. Two-year life expectancy in patients with critical limb ischemia. JACC Cardiovasc Interv. 2014;7(12):1444–9.

    Article  PubMed  Google Scholar 

  75. Simons JP, Goodney PP, Flahive J, Hoel AW, Hallett JW, Kraiss LW, et al. A comparative evaluation of risk-adjustment models for benchmarking amputation-free survival after lower extremity bypass. J Vasc Surg. 2016;63(4):990–7.

    Article  PubMed  Google Scholar 

  76. Schneider PA, Varcoe RL, Secemsky E, Schermerhorn M, Holden A. Update on paclitaxel for femoral-popliteal occlusive disease in the 15 months following a summary level meta-analysis demonstrated increased risk of late mortality and dose response to paclitaxel. J Vasc Surg. 2020.

    Google Scholar 

  77. Katsanos K, Spiliopoulos S, Kitrou P, Krokidis M, Paraskevopoulos I, Karnabatidis D. Risk of death and amputation with use of paclitaxel-coated balloons in the Infrapopliteal arteries for treatment of critical limb ischemia: a systematic review and meta-analysis of randomized controlled trials. J Vasc Interv Radiol JVIR. 2020;31(2):202–12.

    Article  PubMed  Google Scholar 

  78. Nordanstig J, James S, Andersson M, Andersson M, Danielsson P, Gillgren P, et al. Mortality with paclitaxel-coated devices in peripheral artery disease. N Engl J Med. 2020;383(26):2538–46.

    Article  CAS  PubMed  Google Scholar 

  79. Health C for D and R. UPDATE: treatment of peripheral arterial disease with paclitaxel-coated balloons and paclitaxel-eluting stents potentially associated with increased mortality – letter to health care providers. FDA [Internet]. 2019 Dec 20 [cited 2020 Sep 7]; Available from: https://www.fda.gov/medical-devices/letters-health-care-providers/update-treatment-peripheral-arterial-disease-paclitaxel-coated-balloons-and-paclitaxel-eluting

  80. Hicks CW, Holscher CM, Wang P, Black JH, Abularrage CJ, Makary MA. Overuse of early peripheral vascular interventions for claudication. J Vasc Surg. 2020;71(1):121–130.e1.

    Article  PubMed  Google Scholar 

  81. Parekh T, Desai R, Pemmasani S, Cuellar A. Impact of social determinants of health on cardiovascular diseases. J Am Coll Cardiol. 2020;75(11 Supplement 2):1989.

    Google Scholar 

  82. Newman AB, Siscovick DS, Manolio TA, Polak J, Fried LP, Borhani NO, et al. Ankle-arm index as a marker of atherosclerosis in the cardiovascular health study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation. 1993;88(3):837–45.

    Article  CAS  PubMed  Google Scholar 

  83. Criqui MH, Vargas V, Denenberg JO, Ho E, Allison M, Langer RD, et al. Ethnicity and peripheral arterial disease: the San Diego opulation tudy. Circulation. 2005;112(17):2703–7.

    Article  PubMed  Google Scholar 

  84. Racial differences in functional decline in peripheral artery disease and associations with socioeconomic status and education. J Vasc Surg [Internet]. [cited 2020 Aug 31]. Available from: https://www.jvascsurg.org/article/S0741-5214(17)30912-6/fulltext

  85. Soden PA, Zettervall SL, Deery SE, Hughes K, Stoner MC, Goodney PP, et al. Black patients present with more severe vascular disease and a greater burden of risk factors than white patients at time of major vascular intervention. J Vasc Surg. 2018;67(2):549–556.e3.

    Article  PubMed  Google Scholar 

  86. Holman KH, Henke PK, Dimick JB, Birkmeyer JD. Racial disparities in the use of revascularization before leg amputation in Medicare patients. J Vasc Surg. 2011;54(2):420–6, 426.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Regenbogen SE, Gawande AA, Lipsitz SR, Greenberg CC, Jha AK. Do differences in hospital and surgeon quality explain racial disparities in lower-extremity vascular amputations? Ann Surg. 2009;250(3):424–31.

    Article  PubMed  Google Scholar 

  88. Durazzo TS, Frencher S, Gusberg R. Influence of race on the management of lower extremity ischemia: revascularization vs amputation. JAMA Surg. 2013;148(7):617–23.

    Article  PubMed  Google Scholar 

  89. Morrissey NJ, Giacovelli J, Egorova N, Gelijns A, Moskowitz A, McKinsey J, et al. Disparities in the treatment and outcomes of vascular disease in Hispanic patients. J Vasc Surg. 2007;46(5):971–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tan T-W, Shih C-D, Concha-Moore KC, Diri MM, Hu B, Marrero D, et al. Disparities in outcomes of patients admitted with diabetic foot infections. PLoS One. 2019;14(2):e0211481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chew DK, Nguyen LL, Owens CD, Conte MS, Whittemore AD, Gravereaux EC, et al. Comparative analysis of autogenous infrainguinal bypass grafts in African Americans and Caucasians: the association of race with graft function and limb salvage. J Vasc Surg. 2005;42(4):695–701.

    Article  PubMed  Google Scholar 

  92. Rowe VL, Kumar SR, Glass H, Hood DB, Weaver FA. Race independently impacts outcome of infrapopliteal bypass for symptomatic arterial insufficiency. Vasc Endovasc Surg. 2007;41(5):397–401.

    Article  Google Scholar 

  93. Smith EJT, Ramirez JL, Wu B, Zarkowsky DS, Gasper WJ, Finlayson E, et al. Living in a Food Desert is associated with 30-day readmission after revascularization for chronic limb-threatening ischemia. Ann Vasc Surg. 2020.

    Google Scholar 

  94. Childers CP, Lamaina M, Liu C, Mak SS, Suttorp Booth M, Maggard Gibbons M, et al. Cost-effectiveness of leg bypass versus endovascular therapy for critical limb ischemia: a systematic review [Internet]. Washington, DC: Department of Veterans Affairs (US); 2019 [cited 2020 Sep 3]. (VA Evidence-based Synthesis Program Reports). Available from: http://www.ncbi.nlm.nih.gov/books/NBK543445/

  95. Menard MT, Farber A, Assmann SF, Choudhry NK, Conte MS, Creager MA, et al. Design and rationale of the best endovascular versus best surgical therapy for patients with critical limb ischemia (BEST-CLI) Trial J Am Heart Assoc 2016;5(7).

    Google Scholar 

  96. Fereydooni A, Dahl N, Chaar CIO. Technical and ethical challenges in the care of an independent nonagenarian with critical limb ischemia. Arch Clin Med Case Rep. 2020;4(1):130–7.

    Article  Google Scholar 

  97. Wübbeke LF, Naves CCLM, Daemen J-WHC, Jacobs MJ, Mees BME. Editor’s choice – mortality and major amputation after revascularisation in octogenarians versus non-octogenarians with chronic limb threatening Ischaemia: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2020;60(2):231–41.

    Article  PubMed  Google Scholar 

  98. van den Houten MML, Lauret GJ, Fakhry F, Fokkenrood HJP, van Asselt ADI, Hunink MGM, et al. Cost-effectiveness of supervised exercise therapy compared with endovascular revascularization for intermittent claudication. Br J Surg. 2016;103(12):1616–25.

    Article  PubMed  Google Scholar 

  99. Djerf H, Millinger J, Falkenberg M, Jivegård L, Svensson M, Nordanstig J. Absence of long-term benefit of revascularization in patients with intermittent claudication: five-year results from the IRONIC randomized controlled trial. Circ Cardiovasc Interv. 2020;13(1):e008450.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Iannuzzi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Iannuzzi, J., Conte, M. (2024). Peripheral Arterial Disease. In: Wasserman, M.R., Bakerjian, D., Linnebur, S., Brangman, S., Cesari, M., Rosen, S. (eds) Geriatric Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-74720-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74720-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74719-0

  • Online ISBN: 978-3-030-74720-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics