Skip to main content

Immunology of Ageing

  • Reference work entry
  • First Online:
Geriatric Medicine

Abstract

Immunity protects the host against infection, but becomes dysregulated with increasing age and can be a dangerous ally. Older adults tend to respond less well to infections but at the same time suffer more immunopathology. Better understanding of age-related changes to immunity will lead to more appropriate interventions to enhance protective immunity and at the same time reduce immunopathology. To this end, this chapter briefly overviews what is known about the processes leading to human immunosenescence, considering age-associated changes to innate and adaptive immunity and their clinical consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alpert A, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. 2019;25:487–95. https://doi.org/10.1038/s41591-019-0381-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pawelec G. The human immunosenescence phenotype: does it exist? Semin Immunopathol. 2020. https://doi.org/10.1007/s00281-020-00810-3.

  3. Pawelec G, et al. The conundrum of human immune system “senescence”. Mech Ageing Dev. 2020:111357. https://doi.org/10.1016/j.mad.2020.111357.

  4. Zhao L, et al. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol. 2007;81:1386–94. https://doi.org/10.1189/jlb.0506364.

    Article  CAS  PubMed  Google Scholar 

  5. Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing. 2012;9:15. https://doi.org/10.1186/1742-4933-9-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pawelec G. Immune parameters associated with mortality in the elderly are context-dependent: lessons from Sweden, Holland and Belgium. Biogerontology. 2018;19:537–45. https://doi.org/10.1007/s10522-017-9739-z.

    Article  CAS  PubMed  Google Scholar 

  7. Kananen L, et al. The trajectory of the blood DNA methylome ageing rate is largely set before adulthood: evidence from two longitudinal studies. Age (Dordr). 2016;38:65. https://doi.org/10.1007/s11357-016-9927-9.

    Article  CAS  PubMed  Google Scholar 

  8. Day MJ. Ageing, immunosenescence and inflammageing in the dog and cat. J Comp Pathol. 2010;142(Suppl 1):S60–9. https://doi.org/10.1016/j.jcpa.2009.10.011.

    Article  CAS  PubMed  Google Scholar 

  9. Froy H, et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science. 2019;365:1296–8. https://doi.org/10.1126/science.aaw5822.

    Article  CAS  PubMed  Google Scholar 

  10. Belsky DW, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112:E4104–10. https://doi.org/10.1073/pnas.1506264112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanders AE. Shifting the focus of aging research into earlier decades of life Commentary on Belsky et al. Oral Dis. 2015. https://doi.org/10.1111/odi.12431.

  12. Alam I, Goldeck D, Larbi A, Pawelec G. Aging affects the proportions of T and B cells in a group of elderly men in a developing country – a pilot study from Pakistan. Age (Dordr). 2013;35:1521–30. https://doi.org/10.1007/s11357-012-9455-1.

    Article  PubMed  Google Scholar 

  13. Bertram L, et al. Cohort profile: the Berlin aging study II (BASE-II). Int J Epidemiol. 2014;43:703–12. https://doi.org/10.1093/ije/dyt018.

    Article  PubMed  Google Scholar 

  14. Andrew MK, et al. Influenza vaccination in older adults: recent innovations and practical applications. Drugs Aging. 2019;36:29–37. https://doi.org/10.1007/s40266-018-0597-4.

    Article  PubMed  Google Scholar 

  15. Pawelec G, Weng NP. Can an effective SARS-CoV-2 vaccine be developed for the older population? Immun Ageing. 2020;17:8. https://doi.org/10.1186/s12979-020-00180-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013;13:376–89. https://doi.org/10.1038/nri3433.

    Article  CAS  PubMed  Google Scholar 

  17. Konieczny J, Arranz L. Updates on old and weary haematopoiesis. Int J Mol Sci. 2018;19 https://doi.org/10.3390/ijms19092567.

  18. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17:573–90. https://doi.org/10.1038/nri.2017.53.

    Article  CAS  PubMed  Google Scholar 

  19. Akunuru S, Geiger H. Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med. 2016;22:701–12. https://doi.org/10.1016/j.molmed.2016.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leins H, et al. Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood. 2018;132:565–76. https://doi.org/10.1182/blood-2018-02-831065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pawelec GP. CASIN the joint: immune aging at the stem cell level. Blood. 2018;132:553–4. https://doi.org/10.1182/blood-2018-06-858696.

    Article  CAS  PubMed  Google Scholar 

  22. Warren LA, Rossi DJ. Stem cells and aging in the hematopoietic system. Mech Ageing Dev. 2009;130:46–53. https://doi.org/10.1016/j.mad.2008.03.010.

    Article  CAS  PubMed  Google Scholar 

  23. Flach J, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198–202. https://doi.org/10.1038/nature13619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Florian MC, et al. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell. 2020:e13208. https://doi.org/10.1111/acel.13208.

  25. Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14:546–58. https://doi.org/10.1038/nri3713.

    Article  CAS  PubMed  Google Scholar 

  26. Montgomery RR, Shaw AC. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol. 2015;98:937–43. https://doi.org/10.1189/jlb.5MR0315-104R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franceschi C, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105. https://doi.org/10.1016/j.mad.2006.11.016.

    Article  CAS  PubMed  Google Scholar 

  28. Fulop T, et al. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105–11. https://doi.org/10.1016/j.coi.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  29. Sapey E, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 2014;123:239–48. https://doi.org/10.1182/blood-2013-08-519520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fulop T, et al. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2016;17:147–57. https://doi.org/10.1007/s10522-015-9615-7.

    Article  CAS  PubMed  Google Scholar 

  31. Netea MG, van der Meer JW. Trained immunity: an ancient way of remembering. Cell Host Microbe. 2017;21:297–300. https://doi.org/10.1016/j.chom.2017.02.003.

    Article  CAS  PubMed  Google Scholar 

  32. Franceschi C, et al. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol. 2017;8:982. https://doi.org/10.3389/fimmu.2017.00982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S. Innate immunity in aging: impact on macrophage function. Aging Cell. 2004;3:161–7. https://doi.org/10.1111/j.1474-9728.2004.00102.x.

    Article  CAS  PubMed  Google Scholar 

  34. Solana R, et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24:331–41. https://doi.org/10.1016/j.smim.2012.04.008.

    Article  CAS  PubMed  Google Scholar 

  35. Hazeldine J, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13:690–8. https://doi.org/10.1111/acel.12222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cossio I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood. 2019;133:2140–8. https://doi.org/10.1182/blood-2018-10-844571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Solana R, Campos C, Pera A, Tarazona R. Shaping of NK cell subsets by aging. Curr Opin Immunol. 2014;29:56–61. https://doi.org/10.1016/j.coi.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  38. Almeida-Oliveira A, et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72:319–29. https://doi.org/10.1016/j.humimm.2011.01.009.

    Article  CAS  PubMed  Google Scholar 

  39. Reed RG, Al-Attar A, Presnell SR, Lutz CT, Segerstrom SC. A longitudinal study of the stability, variability, and interdependencies among late-differentiated T and NK cell subsets in older adults. Exp Gerontol. 2019;121:46–54. https://doi.org/10.1016/j.exger.2019.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Garff-Tavernier M, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell. 2010;9:527–35. https://doi.org/10.1111/j.1474-9726.2010.00584.x.

    Article  CAS  PubMed  Google Scholar 

  41. Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol. 2016;16:112–23. https://doi.org/10.1038/nri.2015.9.

    Article  CAS  PubMed  Google Scholar 

  42. Fulop T, et al. Immunosupportive therapies in aging. Clin Interv Aging. 2007;2:33–54. https://doi.org/10.2147/ciia.2007.2.1.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong C, Goldstein DR. Impact of aging on antigen presentation cell function of dendritic cells. Curr Opin Immunol. 2013;25:535–41. https://doi.org/10.1016/j.coi.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Agrawal A, Agrawal S, Gupta S. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896. https://doi.org/10.3389/fimmu.2017.00896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017;38:40–51. https://doi.org/10.1016/j.arr.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  46. Della Bella S, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol. 2007;122:220–8. https://doi.org/10.1016/j.clim.2006.09.012.

    Article  CAS  PubMed  Google Scholar 

  47. Schulz AR, et al. Low thymic activity and dendritic cell numbers are associated with the immune response to primary viral infection in elderly humans. J Immunol. 2015;195:4699–711. https://doi.org/10.4049/jimmunol.1500598.

    Article  CAS  PubMed  Google Scholar 

  48. Fulop T, Larbi A, Witkowski JM. Human inflammaging. Gerontology. 2019;65:495–504. https://doi.org/10.1159/000497375.

    Article  PubMed  Google Scholar 

  49. Hagen M, Derudder E. Inflammation and the alteration of B-cell physiology in aging. Gerontology. 2019:1–9. https://doi.org/10.1159/000501963.

  50. Frasca D, Blomberg BB. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front Immunol. 2017;8:1003. https://doi.org/10.3389/fimmu.2017.01003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Camell CD, et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 2019;30:1024–39. https://doi.org/10.1016/j.cmet.2019.10.006. e1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blomberg BB, Frasca D. Age effects on mouse and human B cells. Immunol Res. 2013;57:354–60. https://doi.org/10.1007/s12026-013-8440-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin VG, et al. Transitional B cells in early human B cell development – time to revisit the paradigm? Front Immunol. 2016;7:546. https://doi.org/10.3389/fimmu.2016.00546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibson KL, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8:18–25. https://doi.org/10.1111/j.1474-9726.2008.00443.x.

    Article  CAS  PubMed  Google Scholar 

  55. Wu YC, Kipling D, Dunn-Walters DK. Age-related changes in human peripheral blood IGH repertoire following vaccination. Front Immunol. 2012;3:193. https://doi.org/10.3389/fimmu.2012.00193.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Bourcy CF, et al. Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci U S A. 2017;114:1105–10. https://doi.org/10.1073/pnas.1617959114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ademokun A, et al. Vaccination-induced changes in human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages. Aging Cell. 2011;10:922–30. https://doi.org/10.1111/j.1474-9726.2011.00732.x.

    Article  CAS  PubMed  Google Scholar 

  58. Dunn-Walters DK. The ageing human B cell repertoire: a failure of selection? Clin Exp Immunol. 2016;183:50–6. https://doi.org/10.1111/cei.12700.

    Article  CAS  PubMed  Google Scholar 

  59. Martin V, Bryan Wu YC, Kipling D, Dunn-Walters D. Ageing of the B-cell repertoire. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370 https://doi.org/10.1098/rstb.2014.0237.

  60. Boyd SD, Liu Y, Wang C, Martin V, Dunn-Walters DK. Human lymphocyte repertoires in ageing. Curr Opin Immunol. 2013;25:511–5. https://doi.org/10.1016/j.coi.2013.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frasca D, Diaz A, Romero M, Blomberg BB. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol. 2017;87:113–20. https://doi.org/10.1016/j.exger.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  62. Nipper AJ, Smithey MJ, Shah RC, Canaday DH, Landay AL. Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low PAX5. Clin Immunol. 2018;193:80–7. https://doi.org/10.1016/j.clim.2018.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. Age (Dordr). 2014;36:313–51. https://doi.org/10.1007/s11357-013-9564-5.

    Article  PubMed  Google Scholar 

  64. Pawelec G. Age and immunity: what is “immunosenescence”? Exp Gerontol. 2018;105:4–9. https://doi.org/10.1016/j.exger.2017.10.024.

    Article  CAS  PubMed  Google Scholar 

  65. Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 2005;17:370–7. https://doi.org/10.1016/j.smim.2005.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hadrup SR, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol. 2006;176:2645–53.

    Article  CAS  PubMed  Google Scholar 

  67. Yager EJ, et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205:711–23. https://doi.org/10.1084/jem.20071140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Larbi A, et al. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev. 2011;10:370–8. https://doi.org/10.1016/j.arr.2010.09.008.

    Article  CAS  PubMed  Google Scholar 

  69. Henson SM, Macaulay R, Franzese O, Akbar AN. Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology. 2012;135:355–63. https://doi.org/10.1111/j.1365-2567.2011.03550.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lanna A, et al. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 2017;18:354–63. https://doi.org/10.1038/ni.3665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rebo J, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363. https://doi.org/10.1038/ncomms13363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oh J, Wang W, Thomas R, Su DM. Thymic rejuvenation via FOXN1-reprogrammed embryonic fibroblasts (FREFs) to counteract age-related inflammation. JCI Insight. 2020;5 https://doi.org/10.1172/jci.insight.140313.

  73. Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the microbiota in the modulation of vaccine immune responses. Front Microbiol. 2019;10:1305. https://doi.org/10.3389/fmicb.2019.01305.

    Article  PubMed  PubMed Central  Google Scholar 

  74. O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214–5. https://doi.org/10.1126/science.aac8469.

    Article  CAS  PubMed  Google Scholar 

  75. Shi Y, et al. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005;175:3262–7.

    Article  CAS  PubMed  Google Scholar 

  76. Frasca D, et al. A molecular mechanism for TNF-alpha-mediated downregulation of B cell responses. J Immunol. 2012;188:279–86. https://doi.org/10.4049/jimmunol.1003964.

    Article  CAS  PubMed  Google Scholar 

  77. Frasca D. Senescent B cells in aging and age-related diseases: their role in the regulation of antibody responses. Exp Gerontol. 2018;107:55–8. https://doi.org/10.1016/j.exger.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  78. McElhaney JE, et al. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine. 2012;30:2060–7. https://doi.org/10.1016/j.vaccine.2012.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jergovic M, Contreras NA, Nikolich-Zugich J. Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol. 2019;208:263–9. https://doi.org/10.1007/s00430-019-00605-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pawelec G. Is there a positive side to T cell exhaustion? Front Immunol. 2019;10:111. https://doi.org/10.3389/fimmu.2019.00111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McElhaney JE, et al. The immune response to influenza in older humans: beyond immune senescence. Immun Ageing. 2020;17:10. https://doi.org/10.1186/s12979-020-00181-1.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Heineman TC, Cunningham A, Levin M. Understanding the immunology of Shingrix, a recombinant glycoprotein E adjuvanted herpes zoster vaccine. Curr Opin Immunol. 2019;59:42–8. https://doi.org/10.1016/j.coi.2019.02.009.

    Article  CAS  PubMed  Google Scholar 

  83. Pawelec G. Does patient age influence anti-cancer immunity? Semin Immunopathol. 2019;41:125–31. https://doi.org/10.1007/s00281-018-0697-6.

    Article  CAS  PubMed  Google Scholar 

  84. Pawelec G. Unexpected benefits of aging for favorable responses to PD-1 blockade in melanoma? Clin Cancer Res. 2018. https://doi.org/10.1158/1078-0432.CCR-18-1475.

  85. Parry HM, et al. Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing. 2016;13:1. https://doi.org/10.1186/s12979-015-0056-6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Griffiths P. New vaccines and antiviral drugs for cytomegalovirus. J Clin Virol. 2019;116:58–61. https://doi.org/10.1016/j.jcv.2019.04.007.

    Article  CAS  PubMed  Google Scholar 

  87. Wikby A, Mansson IA, Johansson B, Strindhall J, Nilsson SE. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology. 2008;9:299–308. https://doi.org/10.1007/s10522-008-9138-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Pawelec .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pawelec, G., Müller, L. (2024). Immunology of Ageing. In: Wasserman, M.R., Bakerjian, D., Linnebur, S., Brangman, S., Cesari, M., Rosen, S. (eds) Geriatric Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-74720-6_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74720-6_104

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74719-0

  • Online ISBN: 978-3-030-74720-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics