Skip to main content

Cell-Based Intestinal In Vitro Models for Drug Absorption Screening

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

Despite major innovations in drug administration, oral intake remains the preferred route for drug delivery, mainly due to ease of administration and high patient compliance. Therefore, intestinal permeability of molecules lasts to be critical during oral pharmaceutical research, and the prediction of drug absorption is of major importance in the design, optimization, and selection of drugs and pharmaceutical formulations for oral delivery. There are various in vitro methods to assess the extent of drug absorption across different phases of drug development research. Further to a brief description of the physiology of gastrointestinal mucosa and the absorption mechanisms across the intestinal barrier, this chapter focuses on the different in vitro cell models currently used to predict human permeability. It is given a thorough discussion on their suitability and pros and cons considering the study objectives to evaluate passive, efflux, or uptake carriers mediated absorption, metabolism, and drug–drug interaction. It also intended a critical assessment and clarification about the add value of these models in the absorption-related prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

  • Araújo F, Araújo F, Sarmento B, Sarmento B (2013) Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm 458(1):128–134

    Article  PubMed  CAS  Google Scholar 

  • Artursson P, Artursson P, Karlsson J, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175(3):880–885

    Article  CAS  PubMed  Google Scholar 

  • Aungst BJ (2011) Absorption enhancers: applications and advances. AAPS J 14(1):10–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Awortwe C, Awortwe C, Fasinu PS, Rosenkranz B, Fasinu PS et al (2014) Application of Caco-2 cell line in herb-drug interaction studies: current approaches and challenges. J Pharm Pharm Sci 17(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K et al (2003) Absorption classification of oral drugs based on molecular surface properties. J Med Chem 46(4):558–570

    Article  PubMed  CAS  Google Scholar 

  • Briske-Anderson MJ, Finley JW, Newman SM (1997) The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Exp Biol Med 214(3):248–257

    Article  CAS  Google Scholar 

  • Brittan M (2004) Stam cell in gastrointestinal structure and neoplastic development. Gut 53(6):899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley ST, Fischer SM, Fricker G, Brandl M (2012) In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives. Eur J Pharm Sci 45(3):235–250

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Pérez MÁ, Cabrera-Pérez MÁ, Sanz MB, Sanjuan VM, González-Álvarez M et al (2016) Importance and applications of cell- and tissue-based in vitro models for drug permeability screening in early stages of drug development, pp 3–29. Woodhead Publishing/Amsterdan.

    Google Scholar 

  • Clark M, Clark M (2001) Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev 50(1–2):81–106

    Article  CAS  PubMed  Google Scholar 

  • Creff J, Creff J, Malaquin L, Besson A, Malaquin L et al (2021) In vitro models of intestinal epithelium: toward bioengineered systems. J Tissue Eng 12:204173142098520

    Article  CAS  Google Scholar 

  • Cummins CL, Jacobsen W, Benet LZ (2002) Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 300(3):1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Cusatis G, Gregorc V, Li J, Spreafico A, Ingersoll RG et al (2006) Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 98(23):1739–1742

    Article  CAS  PubMed  Google Scholar 

  • Dressman JB (2016) Chapter Nsuperonosupersub 10 – permeability measurement. In: Oral drug absorption. https://doi.org/10.3109/9781420077346.

  • Gamboa JM, Gamboa JM, Leong KW, Leong KW (2013) In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev 65(6):800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan L-SL, Thakker DR (1997) Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev 23(1–3):77–98

    Article  CAS  Google Scholar 

  • Gibb M, Gibb M, Pradhan SH, Mulenos MR, Lujan H et al (2021) Characterization of a human in vitro intestinal model for the hazard assessment of nanomaterials used in cancer immunotherapy. Appl Sci 11(5):2113

    Article  CAS  Google Scholar 

  • Ng K, Grass G, Lane H, Borchardt RT (1993) Characterization of the unstirred water layer in cultured brain microvessel endothelial cells. In Vitro Cell Dev Biol Anim 29(8):627–629

    Article  Google Scholar 

  • Gullberg E, Gullberg E, Leonard M, Karlsson J, Hopkins AM et al (2000) Expression of specific markers and particle transport in a new human intestinal M-Cell model. Biochem Biophys Res Commun 279(3):808–813

    Article  CAS  PubMed  Google Scholar 

  • Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B et al (2008) Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci 35(5):383–396

    Article  CAS  PubMed  Google Scholar 

  • Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL (2020) The role of the gastrointestinal mucus system in intestinal homeostasis: implications for neurological disorders. Front Cell Infect Microbiol 10. https://doi.org/10.3389/fcimb.2020.00248

  • Hidalgo IJ, Borchardt RT (1990) Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim Biophys Acta (BBA) Biomembr 1028(1):25–30

    Article  CAS  Google Scholar 

  • Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    Article  CAS  PubMed  Google Scholar 

  • Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B et al (2013) Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther 94(1):52–63

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Wang J, Zhang W, Xu X (2006) ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 47(1):208–218

    Article  CAS  Google Scholar 

  • ICH guideline M9 on biopharmaceutics classification 5 system based biowaivers. 2018

    Google Scholar 

  • Ingels FM, Augustijns PF (2003) Biological, pharmaceutical, and analytical considerations with respect to the transport media used in the absorption screening system, Caco-2. J Pharm Sci 92(8):1545–1558

    Article  CAS  PubMed  Google Scholar 

  • Ingels F, Deferme S, Destexhe E, Oth M, Van den Mooter G et al (2002) Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int J Pharm 232(1–2):183–192

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Jin X, Luong T-L, Reese N, Gaona H et al (2014) Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods 70(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Johansson MEV, Sjövall H, Hansson GC (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10(6):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justice BA, Justice BA, Badr NA, Felder RA, Badr NA et al (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1–2, 102):–107

    Google Scholar 

  • Karlsson J, Artursson P (1992) A new diffusion chamber system for the determination of drug permeability coefficients across the human intestinal epithelium that are independent of the unstirred water layer. Biochim Biophys Acta (BBA) Biomembr 1111(2):204–210

    Article  CAS  Google Scholar 

  • Katneni K, Katneni K, Pham T, Saunders J, Chen G et al (2018) Using human plasma as an assay medium in Caco-2 studies improves mass balance for lipophilic compounds. Pharmacol Res 35(11). https://doi.org/10.1007/s11095-018-2493-3

  • Kim YS, Kim YS, Ho SB, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12(5):319–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Korjamo T, Heikkinen AT, Waltari P, Mönkkönen J (2008) The asymmetry of the unstirred water layer in permeability experiments. Pharm Res 25(7):1714–1722

    Article  CAS  PubMed  Google Scholar 

  • Korjamo T, Heikkinen AT, Mönkkönen J (2009) Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci 98(12):4469–4479

    Article  CAS  PubMed  Google Scholar 

  • Langerholc T, Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L et al (2011) Novel and established intestinal cell line models – an indispensable tool in food science and nutrition. Trends Food Sci Technol 22:S11–S20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 28(5):620–630

    Article  CAS  PubMed  Google Scholar 

  • Leonard F, Leonard F, Leonard F, Leonard F, Leonard F et al (2010) A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol Pharm 7(6):2103–2119

    Article  CAS  PubMed  Google Scholar 

  • Li N, Li N, Sui Z, Liu Y, Wang D et al (2018) A fast screening model for drug permeability assessment based on native small intestinal extracellular matrix. RSC Adv 8(60):34514–34524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Transport across epithelia. In: Molecular cell biology, 4th edn. ISBN 978-0716737063

    Google Scholar 

  • Lozoya-Agullo I, Lozoya-Agullo I, Araújo F, González-Álvarez I, Merino-Sanjuán M et al (2017) Usefulness of Caco-2/HT29-MTX and Caco-2/HTJ tissue Eng29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Mol Pharm 14(4):1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Maqueda D, Martínez-Maqueda D, Miralles B, Recio I, Miralles B et al (2015) HT29 cell line. The impact of food bioactives on health, pp 113–124

    Google Scholar 

  • Mateus A, Mateus A, Treyer A, Wegler C, Karlgren M et al (2017) Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci Rep 7(1). https://doi.org/10.1038/srep43047

  • Membrane transporters in drug development. (2010) 9(3): 215–236

    Google Scholar 

  • Meran L, Meran L, Baulies A, Li VSW, Baulies A et al (2017) Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int 2017:1–11

    Article  CAS  Google Scholar 

  • Neuhoff S, Neuhoff S, Ungell A, Zamora I, Artursson P et al (2003) Pharm Res 20(8):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Neuhoff S, Artursson P, Zamora I, Ungell A-L (2006) Impact of extracellular protein binding on passive and active drug transport across Caco-2 cells. Pharm Res 23(2):350–359

    Article  CAS  PubMed  Google Scholar 

  • Ogihara T, Tamai I, Tsuji A (1999) Structural characterization of substrates for the anion exchange transporter in Caco-2 cells∥. J Pharm Sci 88(11):1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Ohno H (2016) Intestinal M cells. J Biochem 159(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Owens BMJ, Simmons A (2012) Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol 6(2):224–234

    Article  PubMed  CAS  Google Scholar 

  • Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira C, Araújo F, Barrias CC, Granja PL, Sarmento B (2015) Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials 56:36–45

    Article  CAS  PubMed  Google Scholar 

  • Powell DW, Powell DW, Adegboyega PA, Di Mari JF, Mifflin RC et al (2005) Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 289(1):G2–G7

    Article  CAS  PubMed  Google Scholar 

  • Press B, Di Grandi D (2008) Permeability for intestinal absorption: caco-2 assay and related issues. Curr Drug Metab 9(9):893–900

    Article  CAS  PubMed  Google Scholar 

  • Rao JN, Wang JY (2011) Intestinal architecture and development. In: Regulation of gastrointestinal mucosal growth

    Google Scholar 

  • Saaby L, Brodin B (2017) A critical view on in vitro analysis of P-glycoprotein (P-gp) transport kinetics. J Pharm Sci 106(9):2257–2264

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Kou JH (2002) Effect of bovine serum albumin on drug permeability estimation across Caco-2 monolayers. Eur J Pharm Biopharm 54(3):319–324

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Yasui-Furukori N, Uno T, Takahata T, Sugawara K et al (2005) Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes. Br J Clin Pharmacol 59(3):302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambuy Y, Sambuy Y, De Angelis I, Ranaldi G, Scarino ML et al (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat PB, Pokharkar VB (2017) Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 7(3):260–280

    Article  Google Scholar 

  • Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y (2003) Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 304(2):610–616

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27(5):425–446

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, Loos WJ, Burger H, Sissung TM, Verweij J et al (2014) Effect of ABCG2 genotype on the oral vioavailability of topotecan. Cancer Biol Ther 4(6):650–653

    Article  Google Scholar 

  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20(2):107–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavelin S, Tavelin S, Taipalensuu J, Söderberg L, Morrison R et al (2003) Prediction of the oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers. Pharm Res 20(3):397–405

    Article  CAS  PubMed  Google Scholar 

  • Tonucci FM, Tonucci FM, Ferretti A, Almada E, Cribb P et al (2018) Microtubules regulate brush border formation. J Cell Physiol 233(2):1468–1480

    Article  CAS  PubMed  Google Scholar 

  • Volpe DA (2008) Variability in caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci 97(2):712–725

    Article  CAS  PubMed  Google Scholar 

  • Volpe DA, Volpe DA (2011) Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med Chem 3(16):2063–2077

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi H, Yano I, Ito T, Hashida T, Futami T et al (1998) Effect of clarithromycin on renal excretion of digoxin: Interaction with P-glycoprotein. Clin Pharmacol Ther 64(1):123–128

    Article  CAS  PubMed  Google Scholar 

  • Xavier M, Xavier M, García-Hevia L, Amado IR, Pastrana L et al (2019) In vitro intestinal uptake and permeability of fluorescently-labelled hyaluronic acid nanogels. Int J Nanomedicine 14:9077–9088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H et al (2000) Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 10(3):195–204

    Article  CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM et al (2018) Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin Pharmacol Ther 104(5):890–899

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work had the collaboration of $TFB – Pharmaceutical Technology and Bioavailability Service, from LCF–Pharmaceutical Sciences Laboratory of BIAL –Portela& Cª, S.A., Avenida da Siderurgia Nacional, 4745-457 Trofa, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Almeida, H. et al. (2022). Cell-Based Intestinal In Vitro Models for Drug Absorption Screening. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics